Suppr超能文献

比较基因组学揭示了根瘤菌共生基因的高水平转移和强烈的纯化选择。

Comparative genomics reveals high rates of horizontal transfer and strong purifying selection on rhizobial symbiosis genes.

机构信息

Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, USA.

出版信息

Proc Biol Sci. 2021 Jan 13;288(1942):20201804. doi: 10.1098/rspb.2020.1804. Epub 2021 Jan 6.

Abstract

Horizontal transfer (HT) alters the repertoire of symbiosis genes in rhizobial genomes and may play an important role in the on-going evolution of the rhizobia-legume symbiosis. To gain insight into the extent of HT of symbiosis genes with different functional roles (nodulation, N-fixation, host benefit and rhizobial fitness), we conducted comparative genomic and selection analyses of the full-genome sequences from 27 rhizobial genomes. We find that symbiosis genes experience high rates of HT among rhizobial lineages but also bear signatures of purifying selection (low Ka : Ks). HT and purifying selection appear to be particularly strong in genes involved in initiating the symbiosis (e.g. nodulation) and in genome-wide association candidates for mediating benefits provided to the host. These patterns are consistent with rhizobia adapting to the host environment through the loss and gain of symbiosis genes, but not with host-imposed positive selection driving divergence of symbiosis genes through recurring bouts of positive selection.

摘要

水平转移(HT)改变了根瘤菌基因组中共生基因的组成,可能在根瘤菌-豆科植物共生的持续进化中发挥重要作用。为了深入了解具有不同功能作用(结瘤、固氮、宿主获益和根瘤菌适应性)的共生基因的 HT 程度,我们对 27 个根瘤菌基因组的全基因组序列进行了比较基因组和选择分析。我们发现,共生基因在根瘤菌谱系之间经历了很高的 HT,但也带有纯化选择(低 Ka:Ks)的特征。HT 和纯化选择似乎在参与启动共生的基因(例如结瘤)中以及在介导宿主获益的全基因组关联候选基因中特别强烈。这些模式与根瘤菌通过共生基因的丧失和获得来适应宿主环境一致,而不是与宿主施加的正向选择通过反复的正向选择驱动共生基因的分歧一致。

相似文献

1
Comparative genomics reveals high rates of horizontal transfer and strong purifying selection on rhizobial symbiosis genes.
Proc Biol Sci. 2021 Jan 13;288(1942):20201804. doi: 10.1098/rspb.2020.1804. Epub 2021 Jan 6.
2
Combining GWAS and population genomic analyses to characterize coevolution in a legume-rhizobia symbiosis.
Mol Ecol. 2023 Jul;32(14):3798-3811. doi: 10.1111/mec.16602. Epub 2022 Jul 21.
3
Coevolution in Rhizobium-legume symbiosis?
DNA Cell Biol. 2009 Aug;28(8):361-70. doi: 10.1089/dna.2009.0863.
4
Evolution of a symbiotic receptor through gene duplications in the legume-rhizobium mutualism.
New Phytol. 2014 Feb;201(3):961-972. doi: 10.1111/nph.12549. Epub 2013 Oct 28.
6
The direct effects of plant polyploidy on the legume-rhizobia mutualism.
Ann Bot. 2018 Feb 12;121(2):209-220. doi: 10.1093/aob/mcx121.
7
Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island.
Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):13875-13880. doi: 10.1073/pnas.1615121113. Epub 2016 Nov 14.
8
Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes in adaptations.
Proc Natl Acad Sci U S A. 2012 May 29;109(22):8629-34. doi: 10.1073/pnas.1120436109. Epub 2012 May 14.
9
Comparative symbiotic plasmid analysis indicates that symbiosis gene ancestor type affects plasmid genetic evolution.
Lett Appl Microbiol. 2018 Jul;67(1):22-31. doi: 10.1111/lam.12998. Epub 2018 May 24.

引用本文的文献

1
Mobile gene clusters and coexpressed plant-rhizobium pathways drive partner quality variation in symbiosis.
Proc Natl Acad Sci U S A. 2025 Aug 5;122(31):e2411831122. doi: 10.1073/pnas.2411831122. Epub 2025 Jul 29.
2
Elevated Rates of Molecular Evolution Genome-wide in Mutualist Legumes and Rhizobia.
Mol Biol Evol. 2024 Dec 6;41(12). doi: 10.1093/molbev/msae245.
3
Unveiling intraspecific diversity and evolutionary dynamics of the foodborne pathogen s through high-quality pan-genome analysis.
Curr Res Food Sci. 2024 Sep 21;9:100867. doi: 10.1016/j.crfs.2024.100867. eCollection 2024.
4
A decade of dinoflagellate genomics illuminating an enigmatic eukaryote cell.
BMC Genomics. 2024 Oct 4;25(1):932. doi: 10.1186/s12864-024-10847-5.
5
Composition of soil assemblages across ecological drivers parallels that of nodule assemblages in ssp. in interior Alaska.
Ecol Evol. 2024 Jul 8;14(7):e11458. doi: 10.1002/ece3.11458. eCollection 2024 Jul.
9
MGEs as the MVPs of Partner Quality Variation in Legume-Rhizobium Symbiosis.
mBio. 2022 Aug 30;13(4):e0088822. doi: 10.1128/mbio.00888-22. Epub 2022 Jun 27.
10
Why are rhizobial symbiosis genes mobile?
Philos Trans R Soc Lond B Biol Sci. 2022 Jan 17;377(1842):20200471. doi: 10.1098/rstb.2020.0471. Epub 2021 Nov 29.

本文引用的文献

2
Symbiosis genes show a unique pattern of introgression and selection within a species complex.
Microb Genom. 2020 Apr;6(4). doi: 10.1099/mgen.0.000351. Epub 2020 Mar 16.
3
Recurrent mutualism breakdown events in a legume rhizobia metapopulation.
Proc Biol Sci. 2020 Jan 29;287(1919):20192549. doi: 10.1098/rspb.2019.2549.
4
Mutualists Stabilize the Coexistence of Congeneric Legumes.
Am Nat. 2019 Feb;193(2):200-212. doi: 10.1086/701056. Epub 2018 Dec 26.
5
More partners, more ranges: generalist legumes spread more easily around the globe.
Biol Lett. 2018 Nov 28;14(11):20180616. doi: 10.1098/rsbl.2018.0616.
6
Measuring phylogenetic signal between categorical traits and phylogenies.
Bioinformatics. 2019 Jun 1;35(11):1862-1869. doi: 10.1093/bioinformatics/bty800.
7
Genome-Wide Association Analyses in the Model Rhizobium .
mSphere. 2018 Oct 24;3(5):e00386-18. doi: 10.1128/mSphere.00386-18.
9
Mutualism in Metapopulations of Legumes and Rhizobia.
Am Nat. 1999 May;153(S5):S48-S60. doi: 10.1086/303211.
10
Select and resequence reveals relative fitness of bacteria in symbiotic and free-living environments.
Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):2425-2430. doi: 10.1073/pnas.1714246115. Epub 2018 Feb 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验