Suppr超能文献

单细胞蛋白质组学分析鉴定出联合 AXL 和 JAK1 抑制作用是一种治疗肺癌的新策略。

Single-Cell Proteomic Profiling Identifies Combined AXL and JAK1 Inhibition as a Novel Therapeutic Strategy for Lung Cancer.

机构信息

Division of Hematology and Oncology, Department of Medicine, University of Texas Health Science Center, San Antonio, Texas.

Department of Life Science, Tunghai University, Taichung, Taiwan.

出版信息

Cancer Res. 2020 Apr 1;80(7):1551-1563. doi: 10.1158/0008-5472.CAN-19-3183. Epub 2020 Jan 28.

Abstract

Cytometry by time-of-flight (CyTOF) simultaneously measures multiple cellular proteins at the single-cell level and is used to assess intertumor and intratumor heterogeneity. This approach may be used to investigate the variability of individual tumor responses to treatments. Herein, we stratified lung tumor subpopulations based on AXL signaling as a potential targeting strategy. Integrative transcriptome analyses were used to investigate how TP-0903, an AXL kinase inhibitor, influences redundant oncogenic pathways in metastatic lung cancer cells. CyTOF profiling revealed that AXL inhibition suppressed SMAD4/TGFβ signaling and induced JAK1-STAT3 signaling to compensate for the loss of AXL. Interestingly, high JAK1-STAT3 was associated with increased levels of AXL in treatment-naïve tumors. Tumors with high AXL, TGFβ, and JAK1 signaling concomitantly displayed CD133-mediated cancer stemness and hybrid epithelial-to-mesenchymal transition features in advanced-stage patients, suggesting greater potential for distant dissemination. Diffusion pseudotime analysis revealed cell-fate trajectories among four different categories that were linked to clinicopathologic features for each patient. Patient-derived organoids (PDO) obtained from tumors with high AXL and JAK1 were sensitive to TP-0903 and ruxolitinib (JAK inhibitor) treatments, supporting the CyTOF findings. This study shows that single-cell proteomic profiling of treatment-naïve lung tumors, coupled with testing of PDOs, identifies continuous AXL, TGFβ, and JAK1-STAT3 signal activation in select tumors that may be targeted by combined AXL-JAK1 inhibition. SIGNIFICANCE: Single-cell proteomic profiling of clinical samples may facilitate the optimal selection of novel drug targets, interpretation of early-phase clinical trial data, and development of predictive biomarkers valuable for patient stratification.

摘要

基于时间飞行的流式细胞术(CyTOF)能够同时在单细胞水平上测量多种细胞蛋白,用于评估肿瘤间和肿瘤内异质性。这种方法可用于研究个体肿瘤对治疗反应的变异性。在此,我们根据 AXL 信号作为潜在的靶向策略对肺肿瘤亚群进行分层。综合转录组分析用于研究 AXL 激酶抑制剂 TP-0903 如何影响转移性肺癌细胞中冗余的致癌途径。CyTOF 分析显示,AXL 抑制抑制 SMAD4/TGFβ 信号,并诱导 JAK1-STAT3 信号来补偿 AXL 的缺失。有趣的是,高 JAK1-STAT3 与治疗前肿瘤中 AXL 的增加水平相关。具有高 AXL、TGFβ 和 JAK1 信号的肿瘤同时显示出 CD133 介导的癌症干性和晚期患者的混合上皮间质转化特征,提示具有更大的远处播散潜力。扩散伪时间分析揭示了四个不同类别之间的细胞命运轨迹,这些轨迹与每位患者的临床病理特征相关。从 AXL 和 JAK1 高的肿瘤获得的患者来源类器官(PDO)对 TP-0903 和鲁索替尼(JAK 抑制剂)治疗敏感,支持 CyTOF 发现。这项研究表明,未经治疗的肺肿瘤的单细胞蛋白质组学分析,结合 PDO 的检测,可识别出特定肿瘤中持续的 AXL、TGFβ 和 JAK1-STAT3 信号激活,这些肿瘤可能通过联合 AXL-JAK1 抑制来靶向。意义:临床样本的单细胞蛋白质组学分析可能有助于为新的药物靶点选择、早期临床试验数据的解释以及有价值的患者分层预测生物标志物的开发提供最佳选择。

相似文献

1
Single-Cell Proteomic Profiling Identifies Combined AXL and JAK1 Inhibition as a Novel Therapeutic Strategy for Lung Cancer.
Cancer Res. 2020 Apr 1;80(7):1551-1563. doi: 10.1158/0008-5472.CAN-19-3183. Epub 2020 Jan 28.
3
AXL confers intrinsic resistance to osimertinib and advances the emergence of tolerant cells.
Nat Commun. 2019 Jan 16;10(1):259. doi: 10.1038/s41467-018-08074-0.
4
Combined effect of cabozantinib and gefitinib in crizotinib-resistant lung tumors harboring ROS1 fusions.
Cancer Sci. 2018 Oct;109(10):3149-3158. doi: 10.1111/cas.13752. Epub 2018 Sep 11.
7
Targeting AXL overcomes resistance to docetaxel therapy in advanced prostate cancer.
Oncotarget. 2017 Jun 20;8(25):41064-41077. doi: 10.18632/oncotarget.17026.
8
Targeting AXL and mTOR Pathway Overcomes Primary and Acquired Resistance to WEE1 Inhibition in Small-Cell Lung Cancer.
Clin Cancer Res. 2017 Oct 15;23(20):6239-6253. doi: 10.1158/1078-0432.CCR-17-1284. Epub 2017 Jul 11.
9

引用本文的文献

1
Organoids in cancer therapies: a comprehensive review.
Front Bioeng Biotechnol. 2025 Jul 22;13:1607488. doi: 10.3389/fbioe.2025.1607488. eCollection 2025.
2
A bibliometric and visual analysis of Jak1 to explore trends and frontiers.
Front Oncol. 2025 Jul 17;15:1537508. doi: 10.3389/fonc.2025.1537508. eCollection 2025.
3
Bridging the gap: how patient-derived lung cancer organoids are transforming personalized medicine.
Front Cell Dev Biol. 2025 Apr 15;13:1554268. doi: 10.3389/fcell.2025.1554268. eCollection 2025.
4
3D tumor cultures for drug resistance and screening development in clinical applications.
Mol Cancer. 2025 Mar 21;24(1):93. doi: 10.1186/s12943-025-02281-2.
5
Lung cancer organoids: a new strategy for precision medicine research.
Transl Lung Cancer Res. 2025 Feb 28;14(2):575-590. doi: 10.21037/tlcr-24-921. Epub 2025 Feb 18.
6
AXL signaling in cancer: from molecular insights to targeted therapies.
Signal Transduct Target Ther. 2025 Feb 10;10(1):37. doi: 10.1038/s41392-024-02121-7.
7
Kupffer Cell-derived IL6 Promotes Hepatocellular Carcinoma Metastasis Via the JAK1-ACAP4 Pathway.
Int J Biol Sci. 2025 Jan 1;21(1):285-305. doi: 10.7150/ijbs.97109. eCollection 2025.
9
Targeting S6K/NFκB/SQSTM1/Polθ signaling to suppress radiation resistance in prostate cancer.
Cancer Lett. 2024 Aug 10;597:217063. doi: 10.1016/j.canlet.2024.217063. Epub 2024 Jun 24.
10
Cancer spreading patterns based on epithelial-mesenchymal plasticity.
Front Cell Dev Biol. 2024 Apr 11;12:1259953. doi: 10.3389/fcell.2024.1259953. eCollection 2024.

本文引用的文献

1
Balancing STAT Activity as a Therapeutic Strategy.
Cancers (Basel). 2019 Nov 3;11(11):1716. doi: 10.3390/cancers11111716.
2
Multidimensional profiling of drug-treated cells by Imaging Mass Cytometry.
FEBS Open Bio. 2019 Sep;9(9):1652-1669. doi: 10.1002/2211-5463.12692. Epub 2019 Jul 21.
3
A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer.
Cell. 2019 May 16;177(5):1330-1345.e18. doi: 10.1016/j.cell.2019.03.005. Epub 2019 Apr 11.
4
CD133 as a regulator of cancer metastasis through the cancer stem cells.
Int J Biochem Cell Biol. 2019 Jan;106:1-7. doi: 10.1016/j.biocel.2018.10.013. Epub 2018 Nov 3.
5
EMT and Stemness in Tumor Dormancy and Outgrowth: Are They Intertwined Processes?
Front Oncol. 2018 Sep 12;8:381. doi: 10.3389/fonc.2018.00381. eCollection 2018.
6
Phenotype molding of stromal cells in the lung tumor microenvironment.
Nat Med. 2018 Aug;24(8):1277-1289. doi: 10.1038/s41591-018-0096-5. Epub 2018 Jul 9.
7
AFM Indentation Analysis of Cells to Study Cell Mechanics and Pericellular Coat.
Methods Mol Biol. 2018;1814:449-468. doi: 10.1007/978-1-4939-8591-3_27.
8
Identification of the tumour transition states occurring during EMT.
Nature. 2018 Apr;556(7702):463-468. doi: 10.1038/s41586-018-0040-3. Epub 2018 Apr 18.
9
DRUG-NEM: Optimizing drug combinations using single-cell perturbation response to account for intratumoral heterogeneity.
Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4294-E4303. doi: 10.1073/pnas.1711365115. Epub 2018 Apr 13.
10
Axl inhibitors as novel cancer therapeutic agents.
Life Sci. 2018 Apr 1;198:99-111. doi: 10.1016/j.lfs.2018.02.033. Epub 2018 Feb 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验