LIPM, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France.
INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France.
mBio. 2020 Jan 28;11(1):e03129-19. doi: 10.1128/mBio.03129-19.
Over millions of years, changes have occurred in regulatory circuitries in response to genome reorganization and/or persistent changes in environmental conditions. How bacteria optimize regulatory circuitries is crucial to understand bacterial adaptation. Here, we analyzed the experimental evolution of the plant pathogen into legume symbionts after the transfer of a natural plasmid encoding the essential mutualistic genes. We showed that the Phc quorum sensing system required for the virulence of the ancestral bacterium was reconfigured to improve intracellular infection of root nodules induced by evolved A single mutation in either the PhcB autoinducer synthase or the PhcQ regulator of the sensory cascade tuned the kinetics of activation of the central regulator PhcA in response to cell density so that the minimal stimulatory concentration of autoinducers needed for a given response was increased. Yet, a change in the expression of a PhcA target gene was observed in infection threads progressing in root hairs, suggesting early programming for the late accommodation of bacteria in nodule cells. Moreover, this delayed switch to the quorum sensing mode decreased the pathogenicity of the ancestral strain, illustrating the functional plasticity of regulatory systems and showing how a small modulation in signal response can produce drastic changes in bacterial lifestyle. Rhizobia are soil bacteria from unrelated genera able to form a mutualistic relationship with legumes. Bacteria induce the formation of root nodules, invade nodule cells, and fix nitrogen to the benefit of the plant. Rhizobial lineages emerged from the horizontal transfer of essential symbiotic genes followed by genome remodeling to activate and/or optimize the acquired symbiotic potential. This evolutionary scenario was replayed in a laboratory evolution experiment in which the plant pathogen successively evolved the capacities to nodulate and poorly invade, then massively invade, nodule cells. In some lines, the improvement of intracellular infection was achieved by mutations modulating a quorum sensing regulatory system of the ancestral strain. This modulation that affects the activity of a central regulator during the earliest stages of symbiosis has a huge impact on late stages of symbiosis. This work showed that regulatory rewiring is the main driver of this pathogeny-symbiosis transition.
在数百万年的时间里,由于基因组重组和/或环境条件的持续变化,调控回路发生了变化。细菌如何优化调控回路对于理解细菌的适应至关重要。在这里,我们分析了植物病原体 在自然质粒转移后成为豆科共生体的实验进化,该质粒编码必需的互利共生基因。我们表明,对于原始细菌的毒力至关重要的 Phc 群体感应系统被重新配置,以改善由进化而来的根瘤菌细胞内感染 在感应级联中的 PhcB 自动诱导物合成酶或 PhcQ 调节剂中,单个突变提高了中央调节剂 PhcA 对细胞密度的激活动力学,使得达到给定响应所需的最小刺激浓度的自动诱导物增加。然而,在根毛中进行的感染线中观察到 PhcA 靶基因的表达变化,这表明了细菌在根瘤细胞中晚期适应的早期编程。此外,这种延迟向群体感应模式的转变降低了原始菌株的致病性,说明了调节系统的功能可塑性,并展示了信号响应的微小调制如何导致细菌生活方式的剧烈变化。根瘤菌是来自不同属的土壤细菌,能够与豆科植物形成共生关系。细菌诱导根瘤的形成,侵入根瘤细胞,并固定氮素以促进植物的生长。根瘤菌谱系是通过必需共生基因的水平转移和随后的基因组重塑而出现的,以激活和/或优化获得的共生潜力。在一个实验室进化实验中,重新演绎了这种进化情景,在该实验中,植物病原体 相继进化出了结瘤和侵入能力差、然后大量侵入根瘤细胞的能力。在一些品系中,通过调节原始菌株的群体感应调节系统的突变来实现细胞内感染的改善。这种在共生早期阶段影响中央调节剂活性的调节重新布线对共生后期阶段有巨大影响。这项工作表明,调节重新布线是这种病原体-共生转变的主要驱动因素。