Suppr超能文献

利用 Sentinel-1 SAR 时间序列和深度学习进行近实时野火蔓延监测。

Near Real-Time Wildfire Progression Monitoring with Sentinel-1 SAR Time Series and Deep Learning.

机构信息

Division of Geoinformatics, KTH Royal Institute of Technology, 10044, Stockholm, Sweden.

British Columbia Ministry of Forests, Lands, Natural Resource Operations and Rural Development, Prince George, British Columbia, V2M 2H3, Canada.

出版信息

Sci Rep. 2020 Jan 28;10(1):1322. doi: 10.1038/s41598-019-56967-x.

Abstract

In recent years, the world witnessed many devastating wildfires that resulted in destructive human and environmental impacts across the globe. Emergency response and rapid response for mitigation calls for effective approaches for near real-time wildfire monitoring. Capable of penetrating clouds and smoke, and imaging day and night, Synthetic Aperture Radar (SAR) can play a critical role in wildfire monitoring. In this communication, we investigated and demonstrated the potential of Sentinel-1 SAR time series with a deep learning framework for near real-time wildfire progression monitoring. The deep learning framework, based on a Convolutional Neural Network (CNN), is developed to detect burnt areas automatically using every new SAR image acquired during the wildfires and by exploiting all available pre-fire SAR time series to characterize the temporal backscatter variations. The results show that Sentinel-1 SAR backscatter can detect wildfires and capture their temporal progression as demonstrated for three large and impactful wildfires: the 2017 Elephant Hill Fire in British Columbia, Canada, the 2018 Camp Fire in California, USA, and the 2019 Chuckegg Creek Fire in northern Alberta, Canada. Compared to the traditional log-ratio operator, CNN-based deep learning framework can better distinguish burnt areas with higher accuracy. These findings demonstrate that spaceborne SAR time series with deep learning can play a significant role for near real-time wildfire monitoring when the data becomes available at daily and hourly intervals with the launches of RADARSAT Constellation Missions in 2019, and SAR CubeSat constellations.

摘要

近年来,全球见证了许多破坏性野火的发生,这些野火在全球范围内造成了破坏性的人员和环境影响。为了应急和快速响应缓解措施,需要有效的近实时野火监测方法。能够穿透云和烟雾,实现日夜成像的合成孔径雷达 (SAR) 在野火监测中可以发挥关键作用。在本通讯中,我们研究并展示了基于深度学习框架的 Sentinel-1 SAR 时间序列在近实时野火进展监测中的潜力。该深度学习框架基于卷积神经网络 (CNN) 开发,用于使用在野火期间获取的每一张新 SAR 图像自动检测烧毁区域,并利用所有可用的预火灾 SAR 时间序列来描述时间反向散射变化。结果表明,Sentinel-1 SAR 反向散射可以检测野火并捕捉其时间进展,这在三个大型和有影响的野火中得到了证明:加拿大不列颠哥伦比亚省的 2017 年大象山火灾、美国加利福尼亚州的 2018 年营火和加拿大阿尔伯塔省北部的 2019 年 Chuckegg Creek 火灾。与传统的对数比算子相比,基于 CNN 的深度学习框架可以更好地区分烧毁区域,具有更高的准确性。这些发现表明,当 2019 年 RADARSAT 星座任务和 SAR 立方体星座开始以每日和每小时的间隔提供数据时,基于星载 SAR 时间序列的深度学习可以在近实时野火监测中发挥重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1b8/6987169/f1f617837600/41598_2019_56967_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验