Suppr超能文献

利用改进的MOD14算法结合机器学习从 Himawari-8 AHI 图像中进行早期森林火灾检测

Early Stage Forest Fire Detection from Himawari-8 AHI Images Using a Modified MOD14 Algorithm Combined with Machine Learning.

作者信息

Maeda Naoto, Tonooka Hideyuki

机构信息

Graduate School of Science and Engineering, Ibaraki University, Hitachi 3168511, Japan.

出版信息

Sensors (Basel). 2022 Dec 25;23(1):210. doi: 10.3390/s23010210.

Abstract

The early detection and rapid extinguishing of forest fires are effective in reducing their spread. Based on the MODIS Thermal Anomaly (MOD14) algorithm, we propose an early stage fire detection method from low-spatial-resolution but high-temporal-resolution images, observed by the Advanced Himawari Imager (AHI) onboard the geostationary meteorological satellite Himawari-8. In order to not miss early stage forest fire pixels with low temperature, we omit the potential fire pixel detection from the MOD14 algorithm and parameterize four contextual conditions included in the MOD14 algorithm as features. The proposed method detects fire pixels from forest areas using a random forest classifier taking these contextual parameters, nine AHI band values, solar zenith angle, and five meteorological values as inputs. To evaluate the proposed method, we trained the random forest classifier using an early stage forest fire data set generated by a time-reversal approach with MOD14 products and time-series AHI images in Australia. The results demonstrate that the proposed method with all parameters can detect fire pixels with about 90% precision and recall, and that the contribution of contextual parameters is particularly significant in the random forest classifier. The proposed method is applicable to other geostationary and polar-orbiting satellite sensors, and it is expected to be used as an effective method for forest fire detection.

摘要

森林火灾的早期发现和迅速扑灭对于减少其蔓延十分有效。基于中分辨率成像光谱仪热异常(MOD14)算法,我们提出了一种从地球静止气象卫星“向日葵-8”搭载的先进地球静止气象卫星成像仪(AHI)观测的低空间分辨率但高时间分辨率图像中进行早期火灾检测的方法。为了不漏掉低温的早期森林火灾像素,我们省去了MOD14算法中的潜在火灾像素检测,并将MOD14算法中包含的四个上下文条件参数化为特征。所提出的方法使用随机森林分类器从森林区域检测火灾像素,该分类器将这些上下文参数、九个AHI波段值、太阳天顶角和五个气象值作为输入。为了评估所提出的方法,我们使用由澳大利亚的MOD14产品和时间序列AHI图像通过时间反转方法生成的早期森林火灾数据集训练随机森林分类器。结果表明,具有所有参数的所提出的方法能够以约90%的精度和召回率检测火灾像素,并且上下文参数在随机森林分类器中的贡献尤为显著。所提出的方法适用于其他地球静止和极轨卫星传感器,有望作为一种有效的森林火灾检测方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64be/9823964/d36ae7499058/sensors-23-00210-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验