Suppr超能文献

利用数据和知识驱动的策略鉴定新型阿尔茨海默病亚型。

Novel Alzheimer's disease subtypes identified using a data and knowledge driven strategy.

机构信息

Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv, Israel.

Pediatric Neurology Institute, "Dana-Dwek" Children's Hospital, Tel Aviv Medical Center, Tel Aviv, Israel.

出版信息

Sci Rep. 2020 Jan 28;10(1):1327. doi: 10.1038/s41598-020-57785-2.

Abstract

The population of adults with Alzheimer's disease (AD) varies in needs and outcomes. The heterogeneity of current AD diagnostic subgroups impedes the use of data analytics in clinical trial design and translation of findings into improved care. The purpose of this project was to define more clinically-homogeneous groups of AD patients and link clinical characteristics with biological markers. We used an innovative big data analysis strategy, the 3C strategy, that incorporates medical knowledge into the data analysis process. A large set of preprocessed AD Neuroimaging Initiative (ADNI) data was analyzed with 3C. The data analysis yielded 6 new disease subtypes, which differ from the assigned diagnosis types and present different patterns of clinical measures and potential biomarkers. Two of the subtypes, "Anosognosia dementia" and "Insightful dementia", differentiate between severe participants based on clinical characteristics and biomarkers. The "Uncompensated mild cognitive impairment (MCI)" subtype, demonstrates clinical, demographic and imaging differences from the "Affective MCI" subtype. Differences were also observed between the "Worried Well" and "Healthy" clusters. The use of data-driven analysis yielded sub-phenotypic clinical clusters that go beyond current diagnoses and are associated with biomarkers. Such homogenous sub-groups can potentially form the basis for enhancement of brain medicine research.

摘要

阿尔茨海默病(AD)患者的成年人的人口在需求和结果上存在差异。当前 AD 诊断亚组的异质性妨碍了数据分析在临床试验设计中的应用,并将研究结果转化为改善护理。本项目的目的是定义更具临床同质性的 AD 患者群体,并将临床特征与生物标志物联系起来。我们使用了一种创新的大数据分析策略,即 3C 策略,该策略将医学知识纳入数据分析过程。使用 3C 对大量预处理的 AD 神经影像学倡议(ADNI)数据进行了分析。数据分析产生了 6 种新的疾病亚型,与分配的诊断类型不同,呈现出不同的临床测量和潜在生物标志物模式。其中两种亚型,“认知障碍型失认症”和“洞察力认知障碍型”,根据临床特征和生物标志物区分严重程度不同的参与者。“未代偿轻度认知障碍(MCI)”亚型与“情感性 MCI”亚型在临床、人口统计学和影像学方面存在差异。“担忧良好”和“健康”集群之间也存在差异。使用数据驱动的分析产生了超越当前诊断并与生物标志物相关的亚表型临床集群。这种同质的亚组可能为增强脑医学研究奠定基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验