Liu Hao, Chen Wenlin, Pan Ruikun, Shan Zhitao, Qiao Ang, Drewitt James W E, Hennet Louis, Jahn Sandro, Langstaff David P, Chass Gregory A, Tao Haizheng, Yue Yuanzheng, Greaves G Neville
State Key Laboratory of Silicate Materials for Architectures Wuhan University of Technology Wuhan 430070 China.
Department of Chemistry and Bioscience Aalborg University DK-9220 Aalborg Denmark.
Adv Sci (Weinh). 2019 Nov 26;7(2):1902209. doi: 10.1002/advs.201902209. eCollection 2020 Jan.
Crystalline calcium aluminates are a critical setting agent in cement. To date, few have explored the microscopic and dynamic mechanism of the transitions from molten aluminate liquids, through the supercooled state to glassy and crystalline phases, during cement clinker production. Herein, the first in situ measurements of viscosity and density are reported across all the principal molten phases, relevant to their eventual crystalline structures. Bulk atomistic computer simulations confirm that thermophysical properties scale with the evolution of network substructures interpenetrating melts on the nanoscale. It is demonstrated that the glass transition temperature ( ) follows the eutectic profile of the liquidus temperature ( ), coinciding with the melting zone in cement production. The viscosity has been uniquely charted over 14 decades for each calcium-aluminate phase, projecting and justifying the different temperature zones used in cement manufacture. The fragile-strong phase transitions are revealed across all supercooled phases coinciding with heterogeneous nucleation close to 1.2 , where sintering and quenching occur in industrial-scale cement processing.
结晶铝酸钙是水泥中的关键凝结剂。迄今为止,很少有人探究在水泥熟料生产过程中,从熔融铝酸盐液体经过过冷状态转变为玻璃态和晶态的微观和动态机制。在此,报告了与最终晶体结构相关的所有主要熔融相的首次原位粘度和密度测量结果。大量原子计算机模拟证实,热物理性质随纳米尺度上相互贯穿熔体的网络子结构的演变而变化。结果表明,玻璃化转变温度( )遵循液相线温度( )的共晶曲线,与水泥生产中的熔化区一致。已针对每个铝酸钙相在14个数量级上独特地绘制了粘度曲线,预测并证明了水泥制造中使用的不同温度区域。在所有过冷相中都揭示了脆弱-强相变,这与工业规模水泥加工中发生烧结和淬火时接近1.2 的异质成核相吻合。