Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Gebze, Turkey.
Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.
Front Cell Infect Microbiol. 2020 Jan 14;9:447. doi: 10.3389/fcimb.2019.00447. eCollection 2019.
is an opportunistic bacterial pathogen leading to life-threatening nosocomial infections. Emergence of highly resistant strains poses a major challenge in the management of the infections by healthcare-associated isolates. Thus, despite intensive efforts, the current treatment strategies remain insufficient to eradicate such infections. Failure of the conventional infection-prevention and treatment efforts explicitly indicates the requirement of new therapeutic approaches. This prompted us to systematically analyze the metabolism to investigate drug targets. Genome-scale metabolic networks (GMNs) facilitating the systematic analysis of the metabolism are promising platforms. Thus, we used a GMN of MGH 78578 to determine putative targets through gene- and metabolite-centric approaches. To develop more realistic infection models, we performed the bacterial growth simulations within different host-mimicking media, using an improved biomass formation reaction. We selected more suitable targets based on several property-based prioritization procedures. KdsA was identified as the high-ranked putative target satisfying most of the target prioritization criteria specified under the gene-centric approach. Through a structure-based virtual screening protocol, we identified potential KdsA inhibitors. In addition, the metabolite-centric approach extended the drug target list based on synthetic lethality. This revealed the importance of combined metabolic analyses for a better understanding of the metabolism. To our knowledge, this is the first comprehensive effort on the investigation of the metabolism for drug target prediction through the constraint-based analysis of its GMN in conjunction with several bioinformatic approaches. This study can guide the researchers for the future drug designs by providing initial findings regarding crucial components of the metabolism.
是一种机会性细菌病原体,可导致危及生命的医院获得性感染。高度耐药菌株的出现给与医疗保健相关的 分离株感染的管理带来了重大挑战。因此,尽管进行了密集的努力,但目前的治疗策略仍然不足以消除这些感染。传统的感染预防和治疗措施的失败明确表明需要新的治疗方法。这促使我们系统地分析 代谢以寻找药物靶点。有助于系统分析代谢的基因组规模代谢网络 (GMN) 是很有前途的平台。因此,我们使用了 MGH 78578 的 GMN 通过基因和代谢物为中心的方法来确定潜在的靶点。为了开发更现实的感染模型,我们在不同的宿主模拟介质中进行了细菌生长模拟,使用了改进的生物量形成反应。我们根据几种基于属性的优先级排序程序选择了更合适的目标。KdsA 被确定为满足基因中心方法规定的大多数目标优先级标准的高排名潜在靶标。通过基于结构的虚拟筛选方案,我们鉴定了潜在的 KdsA 抑制剂。此外,基于代谢物的方法通过合成致死性扩展了药物靶点列表。这揭示了联合代谢分析对于更好地理解代谢的重要性。据我们所知,这是首次通过结合几种生物信息学方法对其 GMN 进行基于约束的分析来研究 代谢以预测药物靶点的全面努力。这项研究可以通过提供有关 代谢关键组成部分的初步发现,为未来的药物设计提供指导。