Suppr超能文献

系统分析微生物代谢以实现选择性靶向。

Systematic analysis of microorganisms' metabolism for selective targeting.

机构信息

Department of Chemical Engineering, School of Chemical, Petroleum and Gas Engineering, Shiraz University, Shiraz, Iran.

W Booth School of Engineering Practice and Technology, McMaster University, Hamilton, ON, Canada.

出版信息

Sci Rep. 2024 Jul 16;14(1):16446. doi: 10.1038/s41598-024-65936-y.

Abstract

Selective drugs with a relatively narrow spectrum can reduce the side effects of treatments compared to broad-spectrum antibiotics by specifically targeting the pathogens responsible for infection. Furthermore, combating an infectious pathogen, especially a drug-resistant microorganism, is more efficient by attacking multiple targets. Here, we combined synthetic lethality with selective drug targeting to identify multi-target and organism-specific potential drug candidates by systematically analyzing the genome-scale metabolic models of six different microorganisms. By considering microorganisms as targeted or conserved in groups ranging from one to six members, we designed 665 individual case studies. For each case, we identified single essential reactions as well as double, triple, and quadruple synthetic lethal reaction sets that are lethal for targeted microorganisms and neutral for conserved ones. As expected, the number of obtained solutions for each case depends on the genomic similarity between the studied microorganisms. Mapping the identified potential drug targets to their corresponding pathways highlighted the importance of key subsystems such as cell envelope biosynthesis, glycerophospholipid metabolism, membrane lipid metabolism, and the nucleotide salvage pathway. To assist in the validation and further investigation of our proposed potential drug targets, we introduced two sets of targets that can theoretically address a substantial portion of the 665 cases. We expect that the obtained solutions provide valuable insights into designing narrow-spectrum drugs that selectively cause system-wide damage only to the target microorganisms.

摘要

选择性药物具有相对较窄的谱,可以通过专门针对感染病原体来减少治疗的副作用,与广谱抗生素相比。此外,通过攻击多个靶点,对抗感染病原体(特别是耐药微生物)更有效。在这里,我们将合成致死性与选择性药物靶向相结合,通过系统分析六种不同微生物的基因组规模代谢模型,确定多靶点和生物体特异性的潜在药物候选物。通过将微生物视为靶向或在一到六个成员范围内保守的群体,我们设计了 665 个单独的案例研究。对于每个案例,我们确定了单个必需反应以及双、三、四重合成致死反应集,这些反应集对靶向微生物是致命的,而对保守微生物是中性的。正如预期的那样,每个案例获得的解决方案数量取决于所研究微生物之间的基因组相似性。将鉴定出的潜在药物靶标映射到其相应的途径上,突出了关键子系统的重要性,如细胞壁生物合成、甘油磷脂代谢、膜脂质代谢和核苷酸补救途径。为了协助验证和进一步研究我们提出的潜在药物靶标,我们引入了两组理论上可以解决 665 个案例中的大部分案例的靶标。我们预计获得的解决方案将为设计仅对目标微生物产生系统范围损伤的窄谱药物提供有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d5a/11252421/764adb09f265/41598_2024_65936_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验