Bäumler Kathrin, Vedula Vijay, Sailer Anna M, Seo Jongmin, Chiu Peter, Mistelbauer Gabriel, Chan Frandics P, Fischbein Michael P, Marsden Alison L, Fleischmann Dominik
3D and Quantitative Imaging Laboratory, Department of Radiology, Stanford University, Stanford, CA, 94305, USA.
Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, 94305, USA.
Biomech Model Mechanobiol. 2020 Oct;19(5):1607-1628. doi: 10.1007/s10237-020-01294-8. Epub 2020 Jan 28.
Credible computational fluid dynamic (CFD) simulations of aortic dissection are challenging, because the defining parallel flow channels-the true and the false lumen-are separated from each other by a more or less mobile dissection membrane, which is made up of a delaminated portion of the elastic aortic wall. We present a comprehensive numerical framework for CFD simulations of aortic dissection, which captures the complex interplay between physiologic deformation, flow, pressures, and time-averaged wall shear stress (TAWSS) in a patient-specific model. Our numerical model includes (1) two-way fluid-structure interaction (FSI) to describe the dynamic deformation of the vessel wall and dissection flap; (2) prestress and (3) external tissue support of the structural domain to avoid unphysiologic dilation of the aortic wall and stretching of the dissection flap; (4) tethering of the aorta by intercostal and lumbar arteries to restrict translatory motion of the aorta; and a (5) independently defined elastic modulus for the dissection flap and the outer vessel wall to account for their different material properties. The patient-specific aortic geometry is derived from computed tomography angiography (CTA). Three-dimensional phase contrast magnetic resonance imaging (4D flow MRI) and the patient's blood pressure are used to inform physiologically realistic, patient-specific boundary conditions. Our simulations closely capture the cyclical deformation of the dissection membrane, with flow simulations in good agreement with 4D flow MRI. We demonstrate that decreasing flap stiffness from [Formula: see text] to [Formula: see text] kPa (a) increases the displacement of the dissection flap from 1.4 to 13.4 mm, (b) decreases the surface area of TAWSS by a factor of 2.3, (c) decreases the mean pressure difference between true lumen and false lumen by a factor of 0.63, and (d) decreases the true lumen flow rate by up to 20% in the abdominal aorta. We conclude that the mobility of the dissection flap substantially influences local hemodynamics and therefore needs to be accounted for in patient-specific simulations of aortic dissection. Further research to accurately measure flap stiffness and its local variations could help advance future CFD applications.
对主动脉夹层进行可靠的计算流体动力学(CFD)模拟具有挑战性,因为其特征性的平行血流通道——真腔和假腔——被一层或多或少可移动的夹层膜分隔开,该夹层膜由弹性主动脉壁的分层部分组成。我们提出了一个用于主动脉夹层CFD模拟的综合数值框架,该框架在特定患者模型中捕捉了生理变形、血流、压力和时间平均壁面切应力(TAWSS)之间的复杂相互作用。我们的数值模型包括:(1)双向流固耦合(FSI),以描述血管壁和夹层瓣的动态变形;(2)预应力;(3)结构域的外部组织支撑,以避免主动脉壁的非生理性扩张和夹层瓣的拉伸;(4)肋间动脉和腰动脉对主动脉的束缚,以限制主动脉的平移运动;以及(5)为夹层瓣和血管外壁独立定义弹性模量,以考虑它们不同的材料特性。特定患者的主动脉几何形状源自计算机断层血管造影(CTA)。三维相位对比磁共振成像(4D流MRI)和患者的血压用于确定符合生理实际的特定患者边界条件。我们的模拟紧密捕捉了夹层膜的周期性变形,血流模拟结果与4D流MRI高度吻合。我们证明,将瓣叶刚度从[公式:见原文]降低到[公式:见原文]kPa,(a)会使夹层瓣的位移从1.4毫米增加到13.4毫米,(b)会使TAWSS的表面积减小2.3倍,(c)会使真腔和假腔之间的平均压差减小0.63倍,并且(d)会使腹主动脉中的真腔流速降低多达20%。我们得出结论,夹层瓣的可移动性会显著影响局部血流动力学,因此在主动脉夹层的特定患者模拟中需要予以考虑。进一步准确测量瓣叶刚度及其局部变化的研究可能有助于推动未来CFD应用的发展。