Tanade Cyrus, Khan Nusrat Sadia, Rakestraw Emily, Ladd William D, Draeger Erik W, Randles Amanda
Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
NPJ Digit Med. 2024 Sep 6;7(1):236. doi: 10.1038/s41746-024-01216-3.
Understanding the evolving nature of coronary hemodynamics is crucial for early disease detection and monitoring progression. We require digital twins that mimic a patient's circulatory system by integrating continuous physiological data and computing hemodynamic patterns over months. Current models match clinical flow measurements but are limited to single heartbeats. To this end, we introduced the longitudinal hemodynamic mapping framework (LHMF), designed to tackle critical challenges: (1) computational intractability of explicit methods; (2) boundary conditions reflecting varying activity states; and (3) accessible computing resources for clinical translation. We show negligible error (0.0002-0.004%) between LHMF and explicit data of 750 heartbeats. We deployed LHMF across traditional and cloud-based platforms, demonstrating high-throughput simulations on heterogeneous systems. Additionally, we established LHMF, where hemodynamically similar heartbeats are clustered to avoid redundant simulations, accurately reconstructing longitudinal hemodynamic maps (LHMs). This study captured 3D hemodynamics over 4.5 million heartbeats, paving the way for cardiovascular digital twins.
了解冠状动脉血流动力学的演变性质对于早期疾病检测和监测病情进展至关重要。我们需要数字孪生模型,通过整合连续的生理数据并计算数月的血流动力学模式来模拟患者的循环系统。当前的模型与临床血流测量结果相符,但仅限于单个心跳。为此,我们引入了纵向血流动力学映射框架(LHMF),旨在应对关键挑战:(1)显式方法的计算难题;(2)反映不同活动状态的边界条件;(3)用于临床转化的可用计算资源。我们展示了LHMF与750次心跳的显式数据之间可忽略不计的误差(0.0002 - 0.004%)。我们在传统平台和基于云的平台上部署了LHMF,展示了在异构系统上的高通量模拟。此外,我们建立了LHMF,将血流动力学相似的心跳聚类以避免冗余模拟,准确重建纵向血流动力学图(LHM)。本研究记录了超过450万次心跳的三维血流动力学,为心血管数字孪生模型铺平了道路。