Institute of Chemistry , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel.
Algemene Chemie , Vrije Universiteit Brussel , Pleinlaan 2 , Brussels 1050 , Belgium.
J Am Chem Soc. 2020 Feb 26;142(8):3836-3850. doi: 10.1021/jacs.9b11507. Epub 2020 Feb 12.
Judiciously applied oriented external electric fields (OEEFs) exert catalytic effects on the kinetics and improve the thermodynamics of chemical reactions. Herein, we examine the ability of OEEFs to assist catalysts and show that the rate of oxidative addition between palladium catalysts and alkyl/aryl electrophiles can be controlled by an OEEF applied along the direction of electron reorganization (the "reaction axis"). The concerted mechanism of oxidative addition proceeds through a transition state with moderate charge transfer character. We demonstrate that OEEFs along the reaction axis can control this charge transfer and impart electrostatic catalysis. When the applied field exceeds a certain critical value (∼0.15 V/Å), we observed a mechanistic crossover from the concerted to a dissociative CSAr type of reactivity for aryl electrophiles. To our surprise, alkyl electrophiles follow a hitherto unexplored S2 pathway for the reaction with large transition state stabilization at relatively low OEEFs. A valence-bond state correlation diagram (VBSCD) is employed to comprehend the results. Finally, although the catalytic effect of salt additives in oxidative addition is known, its mechanism is still under debate. Our findings further show evidence that salt additives exert electric-field effects on the rate of cross-coupling reactions, and their cocatalytic effects can be judiciously reproduced by applied external electric fields. As such, we propose that the use of additives (anionic or cationic) is an experimentally viable strategy to implement external electric-field effects in routinely used oxidative addition catalysis.
明智地应用定向外电场 (OEEF) 可以对动力学施加催化作用,并改善化学反应的热力学。在此,我们研究了 OEEF 辅助催化剂的能力,并表明钯催化剂与烷基/芳基亲电试剂之间的氧化加成速率可以通过沿电子重组方向 (“反应轴”) 施加的 OEEF 来控制。氧化加成的协同机制通过具有中等电荷转移特征的过渡态进行。我们证明,沿反应轴的 OEEF 可以控制这种电荷转移并赋予静电催化作用。当施加的场超过一定的临界值(约 0.15 V/Å)时,我们观察到芳基亲电试剂的反应从协同到解离 CSAr 型反应的机理转变。令我们惊讶的是,对于较大过渡态稳定的烷基亲电试剂,反应遵循迄今尚未探索的 S2 途径。价态键态相关图 (VBSCD) 用于理解结果。最后,尽管盐添加剂在氧化加成中的催化作用是已知的,但它的机制仍存在争议。我们的发现进一步证明了盐添加剂对交叉偶联反应速率的电场效应,并且可以通过施加外电场明智地再现它们的共催化效应。因此,我们提出使用添加剂(阴离子或阳离子)是在常规使用的氧化加成催化中实现外电场效应的一种可行的实验策略。