Feuerstein Linda, Bas Ekin Esme, Golze Dorothea, Heine Thomas, Oschatz Martin, Weidinger Inez M
Chair of Electrochemistry, Technische Universität Dresden, Zellescher Weg 19, Dresden 01069, Germany.
Chair of Theoretical Chemistry, Technische Universität Dresden, Bergstrasse 66c, Dresden 01069, Germany.
ACS Appl Mater Interfaces. 2025 Apr 23;17(16):23996-24004. doi: 10.1021/acsami.5c02366. Epub 2025 Apr 8.
Electrocatalytic reactions are influenced by various interfacial phenomena including nonspecific interaction forces. For many examples, their contributions to the catalytic cycle have yet to be identified. Noncovalent interactions between the electrode and the electrolyte can be described by the local electric field environment at the interface and are experimentally accessible based on the Vibrational Stark Effect. We herein present a carbon-based CN-type electrocatalyst that is active for the hydrogen evolution reaction and that contains nitrile functions as Stark reporter groups. With this system, we expand the range of electrocatalytically active systems suitable for electrochemical Stark spectroscopy while taking a step away from pure model systems. The stretching mode ν(C≡N) was analyzed via experimental and calculated Raman spectroscopy, revealing a defect character of the inherent CN groups. The ν(C≡N) peak position was furthermore studied via in situ electrochemical Raman spectroscopy. At noncatalytic conditions, a linear dependence between an applied electric potential and ν(C≡N) peak shift is observed, resulting in a red-shift at a more negative potential. At catalytic conditions, deviations from the linearity occur, and a semipermanent blue-shift of the CN peak is observed after electrocatalysis, implying a restructuring of the electrochemical double layer and therefore a change in the local electric field environment due to the catalytic turnover and the associated interfacial processes.
电催化反应受到包括非特异性相互作用力在内的各种界面现象的影响。在许多情况下,它们对催化循环的贡献尚未得到确认。电极与电解质之间的非共价相互作用可以通过界面处的局部电场环境来描述,并且基于振动斯塔克效应在实验上是可获取的。我们在此展示了一种基于碳的CN型电催化剂,它对析氢反应具有活性,并且含有腈作为斯塔克报告基团。利用这个体系,我们扩展了适用于电化学斯塔克光谱的电催化活性体系的范围,同时远离了纯粹的模型体系。通过实验和计算拉曼光谱对伸缩模式ν(C≡N)进行了分析,揭示了固有CN基团的缺陷特征。此外,还通过原位电化学拉曼光谱研究了ν(C≡N)峰位置。在非催化条件下,观察到施加电势与ν(C≡N)峰位移之间存在线性关系,在更负的电势下会出现红移。在催化条件下,会出现偏离线性的情况,并且在电催化后观察到CN峰有半永久性的蓝移,这意味着电化学双层发生了重构,因此由于催化周转和相关的界面过程,局部电场环境发生了变化。