Suppr超能文献

钯催化酮、酯和硝基烷烃烯醇盐的α-芳基化反应中强配体敏感性的研究

Accounting for Strong Ligand Sensitivity in Pd-Catalyzed α-Arylation of Enolates from Ketones, Esters, and Nitroalkanes.

作者信息

Tcyrulnikov Sergei, Kozlowski Marisa C

机构信息

Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

出版信息

J Org Chem. 2020 Mar 6;85(5):3465-3472. doi: 10.1021/acs.joc.9b03203. Epub 2020 Feb 12.

Abstract

The mechanism of the Pd-catalyzed α-arylation of three model enolates is studied focusing on an analysis of their very different reactivities. In particular, the low reactivity of nitronates under standard arylation conditions and their high sensitivity to the nature of catalytic systems are addressed. The three canonical steps for each of the reaction systems are examined, and key trends surrounding the stability of intermediates and transition states are delineated. A framework based on molecular orbital analyses and the hard-soft acid-base (HSAB) theory is advanced to explain the observed reactivity trends. The local softness of the enolates was found to be a key parameter controlling the energy of the enolate-catalyst complexes. The low reactivity of the nitroalkane enolates is attributed to slow reductive elimination, a consequence of the hard nature of the nitronate. Analysis of reactivity of nitromethane in α-arylation with Pd catalysts containing Buchwald ligands reveals destabilization of the LPd species as a major non-enolate-specific acceleration mechanism as well as less electron-rich ligands accelerating reductive elimination as a nitronate-specific mechanism. The corresponding energetics and feasibility that favor C-arylation versus O-arylation are outlined.

摘要

研究了钯催化的三种模型烯醇盐α-芳基化反应的机理,重点分析了它们截然不同的反应活性。特别探讨了在标准芳基化条件下硝酮酸酯的低反应活性及其对催化体系性质的高敏感性。研究了每个反应体系的三个典型步骤,并描绘了中间体和过渡态稳定性的关键趋势。提出了一个基于分子轨道分析和软硬酸碱(HSAB)理论的框架来解释观察到的反应活性趋势。发现烯醇盐的局部软度是控制烯醇盐-催化剂络合物能量的关键参数。硝基烷烯醇盐的低反应活性归因于还原消除缓慢,这是硝酮酸酯硬性质的结果。对含有布赫瓦尔德配体的钯催化剂催化硝基甲烷α-芳基化反应活性的分析表明,LPd物种的不稳定是一种主要的非烯醇盐特异性加速机制,而电子云密度较低的配体加速还原消除是一种硝酮酸酯特异性机制。概述了有利于碳芳基化而非氧芳基化的相应能量学和可行性。

相似文献

1
Accounting for Strong Ligand Sensitivity in Pd-Catalyzed α-Arylation of Enolates from Ketones, Esters, and Nitroalkanes.
J Org Chem. 2020 Mar 6;85(5):3465-3472. doi: 10.1021/acs.joc.9b03203. Epub 2020 Feb 12.
2
Palladium-catalyzed alpha-arylation of carbonyl compounds and nitriles.
Acc Chem Res. 2003 Apr;36(4):234-45. doi: 10.1021/ar0201106.
3
Palladium-catalyzed α-arylation of zinc enolates of esters: reaction conditions and substrate scope.
J Org Chem. 2013 Sep 6;78(17):8250-66. doi: 10.1021/jo401476f. Epub 2013 Aug 21.
5
On the mechanism of the palladium-catalyzed β-arylation of ester enolates.
Chemistry. 2012 Feb 13;18(7):1932-44. doi: 10.1002/chem.201103153. Epub 2012 Jan 13.
6
Site-Selective Pd-Catalyzed C(sp )-H Arylation of Heteroaromatic Ketones.
Chemistry. 2021 Dec 15;27(70):17688-17694. doi: 10.1002/chem.202103467. Epub 2021 Nov 11.
7
An improved catalyst for the asymmetric arylation of ketone enolates.
J Am Chem Soc. 2002 Feb 20;124(7):1261-8. doi: 10.1021/ja011122+.
8
Palladium-catalyzed intermolecular alpha-arylation of zinc amide enolates under mild conditions.
J Am Chem Soc. 2006 Apr 19;128(15):4976-85. doi: 10.1021/ja056076i.
9
Electronically flexible PYA ligands for efficient palladium-catalyzed α-arylation of ketones.
Dalton Trans. 2023 Nov 21;52(45):16688-16697. doi: 10.1039/d3dt03182a.
10
Palladium-catalyzed alpha-arylation of esters.
J Am Chem Soc. 2001 Aug 22;123(33):7996-8002. doi: 10.1021/ja010797+.

引用本文的文献

1
Computational Analysis of Enantioselective Pd-Catalyzed α-Arylation of Ketones.
J Org Chem. 2020 Sep 4;85(17):11511-11518. doi: 10.1021/acs.joc.0c01768. Epub 2020 Aug 19.

本文引用的文献

1
Palladium-Catalyzed C-O Cross-Coupling of Primary Alcohols.
Org Lett. 2018 Mar 16;20(6):1580-1583. doi: 10.1021/acs.orglett.8b00325. Epub 2018 Feb 23.
2
Nickel-Catalyzed C-Alkylation of Nitroalkanes with Unactivated Alkyl Iodides.
J Am Chem Soc. 2017 Jun 21;139(24):8110-8113. doi: 10.1021/jacs.7b04312. Epub 2017 Jun 8.
3
Palladium-Catalyzed, Enantioselective α-Arylation of α-Fluorooxindoles.
Org Lett. 2017 Mar 17;19(6):1390-1393. doi: 10.1021/acs.orglett.7b00294. Epub 2017 Mar 6.
4
Palladium-Catalyzed Enantioselective α-Arylation of α-Fluoroketones.
J Am Chem Soc. 2016 Dec 14;138(49):15980-15986. doi: 10.1021/jacs.6b09580. Epub 2016 Dec 1.
5
Copper-Catalyzed Alkylation of Nitroalkanes with α-Bromonitriles: Synthesis of β-Cyanonitroalkanes.
Org Lett. 2016 Mar 4;18(5):988-91. doi: 10.1021/acs.orglett.6b00093. Epub 2016 Feb 11.
6
Palladium-catalyzed enolate arylation as a key C-C bond-forming reaction for the synthesis of isoquinolines.
Org Biomol Chem. 2016 Jan 21;14(3):1065-90. doi: 10.1039/c5ob02320c. Epub 2015 Dec 3.
7
Palladium-Catalyzed α-Arylation of Aryl Nitromethanes.
Org Lett. 2015 Dec 4;17(23):5748-51. doi: 10.1021/acs.orglett.5b02793. Epub 2015 Nov 20.
8
Short and efficient syntheses of protoberberine alkaloids using palladium-catalyzed enolate arylation.
Angew Chem Int Ed Engl. 2014 Dec 22;53(52):14555-8. doi: 10.1002/anie.201409164. Epub 2014 Oct 27.
9
General route for preparing β-nitrocarbonyl compounds using copper thermal redox catalysis.
Org Lett. 2014 Jun 6;16(11):3166-9. doi: 10.1021/ol5014153. Epub 2014 May 28.
10
Minimizing the amount of nitromethane in palladium-catalyzed cross-coupling with aryl halides.
J Org Chem. 2013 Sep 6;78(17):8859-64. doi: 10.1021/jo401249y. Epub 2013 Aug 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验