Suppr超能文献

用于3D形状分类与检索的二阶谱变换模块

Second-order Spectral Transform Block for 3D Shape Classification and Retrieval.

作者信息

Yu Ruixuan, Sun Jian, Li Huibin

出版信息

IEEE Trans Image Process. 2020 Jan 23. doi: 10.1109/TIP.2020.2967579.

Abstract

In this paper, we propose a novel network block, dubbed as second-order spectral transform block, for 3D shape retrieval and classification. This network block generalizes the second-order pooling to 3D surface by designing a learnable non-linear transform on the spectrum of the pooled descriptor. The proposed block consists of following two components. First, the second-order average (SO-Avr) and max-pooling (SOMax) operations are designed on 3D surface to aggregate local descriptors, which are shown to be more discriminative than the popular average-pooling or max-pooling. Second, a learnable spectral transform parameterized by mixture of power function is proposed to perform non-linear feature mapping in the space of pooled descriptors, i.e., manifold of symmetric positive definite matrix for SO-Avr, and space of symmetric matrix for SOMax. The proposed block can be plugged into existing network architectures to aggregate local shape descriptors for boosting their performance. We apply it to a shallow network for nonrigid 3D shape analysis and to existing networks for rigid shape analysis, where it improves the first-tier retrieval accuracy by 7.2% on SHREC'14 Real dataset and achieves state-of-the-art classification accuracy on ModelNet40. As an extension, we apply our block to 2D image classification, showing its superiority compared with traditional second-order pooling methods. We also provide theoretical and experimental analysis on stability of the proposed second-order spectral transform block.

摘要

在本文中,我们提出了一种新颖的网络模块,称为二阶谱变换模块,用于三维形状检索和分类。该网络模块通过在池化描述符的频谱上设计一个可学习的非线性变换,将二阶池化推广到三维曲面。所提出的模块由以下两个部分组成。首先,在三维曲面上设计二阶平均(SO-Avr)和最大池化(SOMax)操作来聚合局部描述符,结果表明这些操作比常用的平均池化或最大池化更具判别力。其次,提出了一种由幂函数混合参数化的可学习谱变换,用于在池化描述符空间中执行非线性特征映射,即对于SO-Avr在对称正定矩阵流形中,对于SOMax在对称矩阵空间中。所提出的模块可以插入到现有的网络架构中,以聚合局部形状描述符来提升其性能。我们将其应用于一个用于非刚性三维形状分析的浅层网络以及用于刚性形状分析的现有网络,在SHREC'14真实数据集上,它将一级检索准确率提高了7.2%,并在ModelNet40上实现了当前最优的分类准确率。作为扩展,我们将我们的模块应用于二维图像分类,展示了其相较于传统二阶池化方法的优越性。我们还对所提出的二阶谱变换模块的稳定性进行了理论和实验分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验