Suppr超能文献

渐进式形状分布编码器,用于学习 3D 形状表示。

Progressive Shape-Distribution-Encoder for Learning 3D Shape Representation.

出版信息

IEEE Trans Image Process. 2017 Mar;26(3):1231-1242. doi: 10.1109/TIP.2017.2651408. Epub 2017 Jan 10.

Abstract

Since there are complex geometric variations with 3D shapes, extracting efficient 3D shape features is one of the most challenging tasks in shape matching and retrieval. In this paper, we propose a deep shape descriptor by learning shape distributions at different diffusion time via a progressive shape-distribution-encoder (PSDE). First, we develop a shape distribution representation with the kernel density estimator to characterize the intrinsic geometry structures of 3D shapes. Then, we propose to learn a deep shape feature through an unsupervised PSDE. Specially, the unsupervised PSDE aims at modeling the complex non-linear transform of the estimated shape distributions between consecutive diffusion time. In order to characterize the intrinsic structures of 3D shapes more efficiently, we stack multiple PSDEs to form a network structure. Finally, we concatenate all neurons in the middle hidden layers of the unsupervised PSDE network to form an unsupervised shape descriptor for retrieval. Furthermore, by imposing an additional constraint on the outputs of all hidden layers, we propose a supervised PSDE to form a supervised shape descriptor. For each hidden layer, the similarity between a pair of outputs from the same class is as large as possible and the similarity between a pair of outputs from different classes is as small as possible. The proposed method is evaluated on three benchmark 3D shape data sets with large geometric variations, i.e., McGill, SHREC'10 ShapeGoogle, and SHREC'14 Human data sets, and the experimental results demonstrate the superiority of the proposed method to the existing approaches.

摘要

由于 3D 形状具有复杂的几何变化,因此提取有效的 3D 形状特征是形状匹配和检索中最具挑战性的任务之一。在本文中,我们通过使用渐进形状分布编码器(PSDE)在不同扩散时间处学习形状分布,提出了一种深度形状描述符。首先,我们开发了一种具有核密度估计的形状分布表示法,以描述 3D 形状的固有几何结构。然后,我们通过无监督 PSDE 提出学习深度形状特征。特别地,无监督 PSDE 旨在对连续扩散时间之间估计的形状分布的复杂非线性变换进行建模。为了更有效地描述 3D 形状的固有结构,我们堆叠多个 PSDE 以形成网络结构。最后,我们将无监督 PSDE 网络中间隐藏层中的所有神经元串联起来,形成用于检索的无监督形状描述符。此外,通过对所有隐藏层的输出施加附加约束,我们提出了一个监督 PSDE 来形成监督形状描述符。对于每个隐藏层,来自同一类别的一对输出之间的相似度尽可能大,而来自不同类别的一对输出之间的相似度尽可能小。该方法在具有较大几何变化的三个基准 3D 形状数据集(即 McGill、SHREC'10 ShapeGoogle 和 SHREC'14 Human 数据集)上进行了评估,实验结果表明了该方法优于现有方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验