Suppr超能文献

重新审视具身问答:一个简单的基线及其他。

Revisiting EmbodiedQA: A Simple Baseline and Beyond.

作者信息

Wu Yu, Jiang Lu, Yang Yi

出版信息

IEEE Trans Image Process. 2020 Jan 23. doi: 10.1109/TIP.2020.2967584.

Abstract

In Embodied Question Answering (EmbodiedQA), an agent interacts with an environment to gather necessary information for answering user questions. Existing works have laid a solid foundation towards solving this interesting problem. But the current performance, especially in navigation, suggests that EmbodiedQA might be too challenging for the contemporary approaches. In this paper, we empirically study this problem and introduce 1) a simple yet effective baseline that achieves promising performance; 2) an easier and practical setting for EmbodiedQA where an agent has a chance to adapt the trained model to a new environment before it actually answers users questions. In this new setting, we randomly place a few objects in new environments, and upgrade the agent policy by a distillation network to retain the generalization ability from the trained model. On the EmbodiedQA v1 benchmark, under the standard setting, our simple baseline achieves very competitive results to the-state-of-the-art; in the new setting, we found the introduced small change in settings yields a notable gain in navigation.

摘要

在具身问答(EmbodiedQA)中,智能体与环境进行交互,以收集回答用户问题所需的信息。现有工作为解决这个有趣的问题奠定了坚实的基础。但目前的性能,尤其是在导航方面,表明具身问答对于当代方法来说可能过于具有挑战性。在本文中,我们对这个问题进行了实证研究,并介绍了:1)一个简单而有效的基线,它取得了有前景的性能;2)一种更简单且实用的具身问答设置,在这种设置中,智能体在实际回答用户问题之前有机会将训练好的模型适应新环境。在这种新设置中,我们在新环境中随机放置一些物体,并通过蒸馏网络升级智能体策略,以保留训练模型的泛化能力。在具身问答v1基准测试中,在标准设置下,我们的简单基线取得了与当前最先进技术非常有竞争力的结果;在新设置中,我们发现设置中引入的小变化在导航方面产生了显著的提升。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验