Suppr超能文献

用于健康数据分析的姿势估计:推动神经科学和心理学领域的人工智能发展。

Pose estimation for health data analysis: advancing AI in neuroscience and psychology.

作者信息

Yu Juan, Zhu Daoyu

机构信息

Hubei Teacher Education Research Center, Hubei University of Education, Wuhan, Hubei, China.

College of Physical Education, Xinyang Normal University, Xinyang, Henan, China.

出版信息

Front Neurol. 2025 Aug 11;16:1596408. doi: 10.3389/fneur.2025.1596408. eCollection 2025.

Abstract

INTRODUCTION

The integration of artificial intelligence (AI) with health data analysis offers unprecedented opportunities to advance research in neuroscience and psychology, particularly in extracting meaningful patterns from complex, heterogeneous, and high-dimensional datasets. Traditional methods often struggle with the dynamic and multi-modal nature of health data, which includes electronic health records, wearable sensor data, and imaging modalities. These methods face challenges in scalability, interpretability, and their ability to incorporate domain-specific knowledge into analytical pipelines, limiting their utility in practical applications.

METHODS

To address these gaps, we propose a novel approach combining the Dynamic Medical Graph Framework (DMGF) and the Attention-Guided Optimization Strategy (AGOS). DMGF leverages graph-based representations to capture the temporal and structural relationships within health datasets, enabling robust modeling of disease progression and patient interactions. The framework integrates multi-modal data sources and applies temporal graph convolutional networks, ensuring both scalability and adaptability to diverse tasks. AGOS complements this by embedding domain-specific constraints and employing attention mechanisms to prioritize critical features, ensuring clinically interpretable and ethically aligned decisions.

RESULTS AND DISCUSSION

Together, these innovations provide a unified, scalable, and interpretable pipeline for tasks such as disease prediction, treatment optimization, and public health monitoring. Empirical evaluations demonstrate superior performance over existing methods, with enhanced interpretability and alignment with clinical principles. This work represents a step forward in leveraging AI to address the complexities of health data in neuroscience and psychology, advancing both research and clinical applications.

摘要

引言

人工智能(AI)与健康数据分析的整合为推进神经科学和心理学研究提供了前所未有的机遇,特别是在从复杂、异构和高维数据集中提取有意义的模式方面。传统方法往往难以应对健康数据的动态和多模态性质,这些数据包括电子健康记录、可穿戴传感器数据和成像模态。这些方法在可扩展性、可解释性以及将特定领域知识纳入分析流程的能力方面面临挑战,限制了它们在实际应用中的效用。

方法

为了弥补这些差距,我们提出了一种将动态医学图框架(DMGF)和注意力引导优化策略(AGOS)相结合的新颖方法。DMGF利用基于图的表示来捕捉健康数据集中的时间和结构关系,从而能够对疾病进展和患者交互进行稳健建模。该框架整合了多模态数据源并应用时间图卷积网络,确保了可扩展性和对各种任务的适应性。AGOS通过嵌入特定领域的约束并采用注意力机制来对关键特征进行优先级排序,以此作为补充,确保临床可解释且符合伦理的决策。

结果与讨论

这些创新共同为疾病预测、治疗优化和公共卫生监测等任务提供了一个统一、可扩展且可解释的流程。实证评估表明,该方法比现有方法具有更优的性能,具有更强的可解释性且符合临床原则。这项工作代表了在利用人工智能解决神经科学和心理学中健康数据复杂性方面向前迈出的一步,推动了研究和临床应用的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ddf/12376901/e77486fdddc2/fneur-16-1596408-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验