Suppr超能文献

用于域适应的子空间分布适应框架

Subspace Distribution Adaptation Frameworks for Domain Adaptation.

作者信息

Chen Sentao, Han Le, Liu Xiaolan, He Zongyao, Yang Xiaowei

出版信息

IEEE Trans Neural Netw Learn Syst. 2020 Dec;31(12):5204-5218. doi: 10.1109/TNNLS.2020.2964790. Epub 2020 Nov 30.

Abstract

Domain adaptation tries to adapt a model trained from a source domain to a different but related target domain. Currently, prevailing methods for domain adaptation rely on either instance reweighting or feature transformation. Unfortunately, instance reweighting has difficulty in estimating the sample weights as the dimension increases, whereas feature transformation sometimes fails to make the transformed source and target distributions similar when the cross-domain discrepancy is large. In order to overcome the shortcomings of both methodologies, in this article, we model the unsupervised domain adaptation problem under the generalized covariate shift assumption and adapt the source distribution to the target distribution in a subspace by applying a distribution adaptation function. Accordingly, we propose two frameworks: Bregman-divergence-embedded structural risk minimization (BSRM) and joint structural risk minimization (JSRM). In the proposed frameworks, the subspace distribution adaptation function and the target prediction model are jointly learned. Under certain instantiations, convex optimization problems are derived from both frameworks. Experimental results on the synthetic and real-world text and image data sets show that the proposed methods outperform the state-of-the-art domain adaptation techniques with statistical significance.

摘要

域适应试图将从源域训练的模型应用于不同但相关的目标域。当前,主流的域适应方法依赖于实例重加权或特征变换。不幸的是,随着维度增加,实例重加权在估计样本权重方面存在困难,而当跨域差异较大时,特征变换有时无法使变换后的源分布和目标分布相似。为了克服这两种方法的缺点,在本文中,我们在广义协变量转移假设下对无监督域适应问题进行建模,并通过应用分布适应函数在子空间中将源分布适配到目标分布。相应地,我们提出了两个框架:Bregman散度嵌入结构风险最小化(BSRM)和联合结构风险最小化(JSRM)。在所提出的框架中,子空间分布适应函数和目标预测模型是联合学习的。在某些实例化情况下,从这两个框架中导出凸优化问题。在合成和真实世界的文本及图像数据集上的实验结果表明,所提出的方法在统计意义上优于当前最先进的域适应技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验