Patel Jainabbi Irshad Ahmed, Poyya Jagadeesha, Padakannaya Apeksha, Kurdekar Namrata Manjunath, Khandagale Ajay Sathayanarayan, Joshi Chandrashekhar Gajanan, Kanade Santosh R, Satyamoorthy Kapaettu
SDM Research Institute for Biomedical Sciences, Shri Dharmasthala Manjunatheshwara University, Dharwad, Karnataka, 580009, India.
Department of Biochemistry, Mangalore University, Mangalore, Karnataka, 574199, India.
Sci Rep. 2025 Jan 7;15(1):1113. doi: 10.1038/s41598-024-83730-8.
In oxygen-deprived conditions, cells respond by activating adaptive mechanisms to bolster their survival and protect tissue integrity. A key player in this process is the HIF-1α signaling cascade, meticulously regulated by Prolyl Hydroxylase Domain 2 (PHD2), which orchestrates cellular responses to varying oxygen levels. The primary aim of this investigation is to utilize gut siderophores as inhibitors of PHD2 in ischemic conditions. This study also helps in understanding the structural mechanisms by which gut microbiota regulate HIF-1α via PHD2 inhibition through the secretion of siderophores. We explore potential PHD2 inhibitors through in-silico approaches, specifically molecular docking, binding pose metadynamics, molecular dynamics simulations, and free energy calculations. We evaluated siderophores secreted by gut microbiota as candidate inhibitors for PHD2. Docking studies revealed that Salmochelin SX exhibits the highest binding affinity to PHD2 (- 9.527 kcal/mol), interacting with key residues such as ASP254, TYR310, ASP315, and ARG322. Despite its high affinity, binding pose metadynamics indicated instability for Salmochelin SX, whereas Staphyloferrin A demonstrated superior stability. Molecular dynamics simulations confirmed stable ligand interactions with PHD2, highlighting HIS313 and ASP315 as critical for inhibition. Principal Component Analysis (PCA) and Free Energy Landscape (FEL) analyses underscored conformational changes and binding stability, suggesting that these interactions may stabilize PHD2's active site and have potential therapeutic implications. Additionally, the study reveals how gut microbiota prevent gut dysbiosis through the stabilization of HIF-1α signaling by secreting siderophores.
在缺氧条件下,细胞通过激活适应性机制来增强其生存能力并保护组织完整性。这一过程中的关键参与者是低氧诱导因子-1α(HIF-1α)信号级联反应,它由脯氨酰羟化酶结构域2(PHD2)精细调控,PHD2协调细胞对不同氧水平的反应。本研究的主要目的是利用肠道铁载体作为缺血条件下PHD2的抑制剂。这项研究还有助于理解肠道微生物群通过分泌铁载体抑制PHD2来调节HIF-1α的结构机制。我们通过计算机模拟方法,特别是分子对接、结合姿态元动力学、分子动力学模拟和自由能计算,探索潜在的PHD2抑制剂。我们评估了肠道微生物群分泌的铁载体作为PHD2的候选抑制剂。对接研究表明,沙门菌素SX对PHD2表现出最高的结合亲和力(-9.527千卡/摩尔),与ASP254、TYR310、ASP315和ARG322等关键残基相互作用。尽管沙门菌素SX具有高亲和力,但结合姿态元动力学表明其不稳定,而葡萄球菌铁载体A表现出更高的稳定性。分子动力学模拟证实了配体与PHD2的稳定相互作用,突出了HIS313和ASP315对抑制作用的关键作用。主成分分析(PCA)和自由能景观(FEL)分析强调了构象变化和结合稳定性,表明这些相互作用可能稳定PHD2的活性位点并具有潜在的治疗意义。此外,该研究还揭示了肠道微生物群如何通过分泌铁载体稳定HIF-1α信号来预防肠道菌群失调。