Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany.
Engler-Bunte-Institute, Chair of Water Chemistry and Water Technology, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 1-7, 76131, Karlsruhe, Germany.
ISME J. 2020 May;14(5):1125-1140. doi: 10.1038/s41396-020-0595-5. Epub 2020 Jan 29.
Coupling microbial electrosynthesis to renewable energy sources can provide a promising future technology for carbon dioxide conversion. However, this technology suffers from a limited number of suitable biocatalysts, resulting in a narrow product range. Here, we present the characterization of the first thermoacidophilic electroautotrophic community using chronoamperometric, metagenomic, and C-labeling analyses. The cathodic biofilm showed current consumption of up to -80 µA cm over a period of 90 days (-350 mV vs. SHE). Metagenomic analyses identified members of the genera Moorella, Desulfofundulus, Thermodesulfitimonas, Sulfolobus, and Acidianus as potential primary producers of the biofilm, potentially thriving via an interspecies sulfur cycle. Hydrogenases seem to be key for cathodic electron uptake. An isolation campaign led to a pure culture of a Knallgas bacterium from this community. Growth of this organism on cathodes led to increasing reductive currents over time. Transcriptomic analyses revealed a distinct gene expression profile of cells grown at a cathode. Moreover, pressurizable flow cells combined with optical coherence tomography allowed an in situ observation of cathodic biofilm growth. Autotrophic growth was confirmed via isotope analysis. As a natural polyhydroxybutyrate (PHB) producer, this novel species, Kyrpidia spormannii, coupled the production of PHB to CO fixation on cathode surfaces.
将微生物电合成与可再生能源相结合,可以为二氧化碳转化提供一种有前途的未来技术。然而,这项技术受到合适生物催化剂数量有限的限制,导致产品范围狭窄。在这里,我们通过恒电流安培、宏基因组和 C 标记分析,介绍了第一个嗜热嗜酸电自养群落的特征。阴极生物膜在 90 天内的电流消耗高达-80 μA·cm(相对于 SHE 为-350 mV)。宏基因组分析鉴定出 Moorella、Desulfofundulus、Thermodesulfitimonas、Sulfolobus 和 Acidianus 属的成员为生物膜的潜在初级生产者,可能通过种间硫循环而茁壮成长。氢化酶似乎是阴极电子摄取的关键。从这个群落中进行了一次分离运动,获得了一种来自该群落的 Knallgas 细菌的纯培养物。该生物体在阴极上的生长导致还原电流随时间的增加而增加。转录组分析揭示了在阴极上生长的细胞的独特基因表达谱。此外,可加压的流动池结合光学相干断层扫描允许对阴极生物膜的原位观察。通过同位素分析证实了自养生长。作为一种天然聚羟基丁酸酯(PHB)的生产者,这种新型的 Kyrpidia spormannii 将 PHB 的生产与阴极表面的 CO 固定相结合。