Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France.
RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S/FNRS), Université Libre de Bruxelles (ULB), and Center for Microscopy and Molecular Imaging (CMMI), B-6041 Charleroi-Gosselies, Belgium.
Nucleic Acids Res. 2020 Apr 17;48(7):3848-3868. doi: 10.1093/nar/gkaa066.
U3 snoRNA and the associated Rrp9/U3-55K protein are essential for 18S rRNA production by the SSU-processome complex. U3 and Rrp9 are required for early pre-rRNA cleavages at sites A0, A1 and A2, but the mechanism remains unclear. Substitution of Arg 289 in Rrp9 to Ala (R289A) specifically reduced cleavage at sites A1 and A2. Surprisingly, R289 is located on the surface of the Rrp9 β-propeller structure opposite to U3 snoRNA. To understand this, we first characterized the protein-protein interaction network of Rrp9 within the SSU-processome. This identified a direct interaction between the Rrp9 β-propeller domain and Rrp36, the strength of which was reduced by the R289A substitution, implicating this interaction in the observed processing phenotype. The Rrp9 R289A mutation also showed strong synergistic negative interactions with mutations in U3 that destabilize the U3/pre-rRNA base-pair interactions or reduce the length of their linking segments. We propose that the Rrp9 β-propeller and U3/pre-rRNA binding cooperate in the structure or stability of the SSU-processome. Additionally, our analysis of U3 variants gave insights into the function of individual segments of the 5'-terminal 72-nt sequence of U3. We interpret these data in the light of recently reported SSU-processome structures.
U3 snoRNA 和相关的 Rrp9/U3-55K 蛋白对于 SSU 加工体复合物中 18S rRNA 的产生是必不可少的。U3 和 Rrp9 对于在 A0、A1 和 A2 位点的早期前 rRNA 切割是必需的,但机制尚不清楚。Rrp9 中的精氨酸 289 突变为丙氨酸(R289A)特异性地减少了 A1 和 A2 位点的切割。令人惊讶的是,R289 位于 Rrp9 β-桨叶结构的表面,与 U3 snoRNA 相对。为了理解这一点,我们首先对 Rrp9 在 SSU 加工体中的蛋白质-蛋白质相互作用网络进行了表征。这确定了 Rrp9 β-桨叶结构域与 Rrp36 之间的直接相互作用,该相互作用的强度因 R289A 取代而降低,表明这种相互作用与观察到的加工表型有关。Rrp9 R289A 突变与使 U3 不稳定的 U3/pre-rRNA 碱基对相互作用或减少其连接片段长度的突变也表现出强烈的协同负相互作用。我们提出 Rrp9 β-桨叶和 U3/pre-rRNA 结合在 SSU 加工体的结构或稳定性中合作。此外,我们对 U3 变体的分析为 U3 5'端 72nt 序列的各个片段的功能提供了深入了解。我们根据最近报道的 SSU 加工体结构解释了这些数据。