文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

U3 小核仁 RNA 与 5'-ETS 区之间的第二个碱基对相互作用对于酵母前核糖体 RNA 的早期切割是必需的。

A second base pair interaction between U3 small nucleolar RNA and the 5'-ETS region is required for early cleavage of the yeast pre-ribosomal RNA.

机构信息

Faculté des Sciences et Technologies, Nancy University, UMR AREMS 7214 CNRS-UHP, Boulevard des Aiguillettes, BP70239, 54506 Vandoeuvre-Lès-Nancy cedex, France.

出版信息

Nucleic Acids Res. 2011 Dec;39(22):9731-45. doi: 10.1093/nar/gkr675. Epub 2011 Sep 2.


DOI:10.1093/nar/gkr675
PMID:21890904
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3239212/
Abstract

In eukaryotes, U3 snoRNA is essential for pre-rRNA maturation. Its 5'-domain was found to form base pair interactions with the 18S and 5'-ETS parts of the pre-rRNA. In Xenopus laevis, two segments of U3 snoRNA form base-pair interactions with the 5'-ETS region and only one of them is essential to the maturation process. In Saccharomyces cerevisiae, two similar U3 snoRNA-5' ETS interactions are possible; but, the functional importance of only one of them had been tested. Surprisingly, this interaction, which corresponds to the non-essential one in X. laevis, is essential for cell growth and pre-rRNA maturation in yeast. In parallel with [Dutca et al. (2011) The initial U3 snoRNA:pre-rRNA base pairing interaction required for pre-18S rRNA folding revealed by in vivo chemical probing. Nucleic Acids Research, 39, 5164-5180], here we show, that the second possible 11-bp long interaction between the 5' domain of S. cerevisiae U3 snoRNA and the pre-rRNA 5'-ETS region (helix VI) is also essential for pre-rRNA processing and cell growth. Compensatory mutations in one-half of helix VI fully restored cell growth. Only a partial restoration of growth was obtained upon extension of compensatory mutations to the entire helix VI, suggesting sequence requirement for binding of specific proteins. Accordingly, we got strong evidences for a role of segment VI in the association of proteins Mpp10, Imp4 and Imp3.

摘要

在真核生物中,U3 snoRNA 对于 pre-rRNA 的成熟是必不可少的。其 5'-结构域被发现与 pre-rRNA 的 18S 和 5'-ETS 部分形成碱基对相互作用。在非洲爪蟾中,U3 snoRNA 的两个片段与 5'-ETS 区域形成碱基对相互作用,只有其中一个片段对成熟过程是必不可少的。在酿酒酵母中,两个类似的 U3 snoRNA-5' ETS 相互作用是可能的;但是,只有其中一个的功能重要性已经得到了测试。令人惊讶的是,这种相互作用对应于非洲爪蟾中非必需的相互作用,对于酵母中的细胞生长和 pre-rRNA 成熟是必不可少的。与 [Dutca 等人(2011)体内化学探测揭示了初始 U3 snoRNA:pre-rRNA 碱基配对相互作用对于 pre-18S rRNA 折叠的重要性。核酸研究,39,5164-5180] 平行,我们在这里表明,酿酒酵母 U3 snoRNA 的 5' 结构域和 pre-rRNA 5'-ETS 区域(螺旋 VI)之间的第二个可能的 11 个碱基长相互作用对于 pre-rRNA 加工和细胞生长也是必不可少的。螺旋 VI 一半的补偿性突变完全恢复了细胞生长。只有当补偿性突变扩展到整个螺旋 VI 时,才能获得生长的部分恢复,这表明特定蛋白质结合的序列要求。相应地,我们得到了强有力的证据表明,片段 VI 在 Mpp10、Imp4 和 Imp3 蛋白的结合中起作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/3239212/afa7e59df30b/gkr675f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/3239212/8bce2bfcae59/gkr675f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/3239212/42707af2a6c4/gkr675f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/3239212/f8dd991ee1a1/gkr675f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/3239212/5b69b7ef0251/gkr675f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/3239212/afa7e59df30b/gkr675f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/3239212/8bce2bfcae59/gkr675f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/3239212/42707af2a6c4/gkr675f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/3239212/f8dd991ee1a1/gkr675f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/3239212/5b69b7ef0251/gkr675f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aef/3239212/afa7e59df30b/gkr675f5.jpg

相似文献

[1]
A second base pair interaction between U3 small nucleolar RNA and the 5'-ETS region is required for early cleavage of the yeast pre-ribosomal RNA.

Nucleic Acids Res. 2011-9-2

[2]
Imp3 unfolds stem structures in pre-rRNA and U3 snoRNA to form a duplex essential for small subunit processing.

RNA. 2013-8-26

[3]
Xenopus U3 snoRNA docks on pre-rRNA through a novel base-pairing interaction.

RNA. 2004-6

[4]
An evolutionary intra-molecular shift in the preferred U3 snoRNA binding site on pre-ribosomal RNA.

Nucleic Acids Res. 2005-9-6

[5]
The spacing between functional Cis-elements of U3 snoRNA is critical for rRNA processing.

J Mol Biol. 2000-6-30

[6]
Components of an interdependent unit within the SSU processome regulate and mediate its activity.

Mol Cell Biol. 2002-10

[7]
The initial U3 snoRNA:pre-rRNA base pairing interaction required for pre-18S rRNA folding revealed by in vivo chemical probing.

Nucleic Acids Res. 2011-2-23

[8]
Base pairing between U3 small nucleolar RNA and the 5' end of 18S rRNA is required for pre-rRNA processing.

Mol Cell Biol. 1999-9

[9]
Synergistic defects in pre-rRNA processing from mutations in the U3-specific protein Rrp9 and U3 snoRNA.

Nucleic Acids Res. 2020-4-17

[10]
The DEAH-box helicase Dhr1 dissociates U3 from the pre-rRNA to promote formation of the central pseudoknot.

PLoS Biol. 2015-2-24

引用本文的文献

[1]
Yeast pre-rRNA is processed at the A' site.

MicroPubl Biol. 2025-6-27

[2]
Mapping and engineering RNA-driven architecture of the multiphase nucleolus.

Nature. 2025-7-2

[3]
DEAD-box RNA helicase 10 is required for 18S rRNA maturation by controlling the release of U3 snoRNA from pre-rRNA in embryonic stem cells.

Nat Commun. 2024-11-27

[4]
Mapping and engineering RNA-controlled architecture of the multiphase nucleolus.

bioRxiv. 2024-9-29

[5]
Ribosome Biogenesis and Cancer: Insights into NOB1 and PNO1 Mechanisms.

Curr Pharm Des. 2024

[6]
KARR-seq reveals cellular higher-order RNA structures and RNA-RNA interactions.

Nat Biotechnol. 2024-12

[7]
RNA folding and functions of RNA helicases in ribosome biogenesis.

RNA Biol. 2022-1

[8]
Eukaryotic Ribosome Biogenesis: The 40S Subunit.

Acta Naturae. 2022

[9]
Emerging Data on the Diversity of Molecular Mechanisms Involving C/D snoRNAs.

Noncoding RNA. 2021-5-6

[10]
Genetics animates structure: leveraging genetic interactions to study the dynamics of ribosome biogenesis.

Curr Genet. 2021-10

本文引用的文献

[1]
The initial U3 snoRNA:pre-rRNA base pairing interaction required for pre-18S rRNA folding revealed by in vivo chemical probing.

Nucleic Acids Res. 2011-2-23

[2]
Utp25p, a nucleolar Saccharomyces cerevisiae protein, interacts with U3 snoRNP subunits and affects processing of the 35S pre-rRNA.

FEBS J. 2010-5-27

[3]
Yeast pre-rRNA processing and modification occur cotranscriptionally.

Mol Cell. 2010-3-26

[4]
RNA chaperones stimulate formation and yield of the U3 snoRNA-Pre-rRNA duplexes needed for eukaryotic ribosome biogenesis.

J Mol Biol. 2009-7-31

[5]
The post-transcriptional steps of eukaryotic ribosome biogenesis.

Cell Mol Life Sci. 2008-8

[6]
Analysis of sequence and structural features that identify the B/C motif of U3 small nucleolar RNA as the recognition site for the Snu13p-Rrp9p protein pair.

Mol Cell Biol. 2007-2

[7]
An evolutionary intra-molecular shift in the preferred U3 snoRNA binding site on pre-ribosomal RNA.

Nucleic Acids Res. 2005-9-6

[8]
Imp3p and Imp4p mediate formation of essential U3-precursor rRNA (pre-rRNA) duplexes, possibly to recruit the small subunit processome to the pre-rRNA.

Proc Natl Acad Sci U S A. 2004-10-26

[9]
Role of pre-rRNA base pairing and 80S complex formation in subnucleolar localization of the U3 snoRNP.

Mol Cell Biol. 2004-10

[10]
Xenopus U3 snoRNA docks on pre-rRNA through a novel base-pairing interaction.

RNA. 2004-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索