Suppr超能文献

一种用于处理小分子数据独立采集后产生的高分辨率质谱大数据的机器学习方法 - 利用人工神经网络进行样品分类的概念验证研究。

A machine learning approach for handling big data produced by high resolution mass spectrometry after data independent acquisition of small molecules - Proof of concept study using an artificial neural network for sample classification.

机构信息

Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland.

Department of Forensic Genetics, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland.

出版信息

Drug Test Anal. 2020 Jun;12(6):836-845. doi: 10.1002/dta.2775. Epub 2020 Feb 6.

Abstract

Liquid chromatography coupled to high-resolution mass spectrometry (HRMS) enables data independent acquisition (DIA) and untargeted screening. However, to avoid the handling of the resulting large dataset, most laboratories in that field still use targeted screening methods, which offer good sensitivity and specificity but are limited to known compounds. The promising field of machine learning offers new possibilities such as artificial neural networks that can be trained to classify large amounts of data. In this proof of concept study, we exemplify such a machine learning approach for raw HRMS-DIA data files. We evaluated a machine learning model using training, validation, and test sets of solvent and whole blood samples containing drugs (of abuse) common in forensic toxicology. For that purpose, different platforms were used. With a feedforward neural network model architecture, a category prediction (blank sample vs. drug containing sample) was aimed for. With the applied machine learning approaches, the sensitivity and specificity, of the validation and test set, for the prediction of sample classes were in a suitable range for an actual use in a (routine) laboratory (e.g. workplace drug testing). In conclusion, this proof of concept study clearly demonstrated the huge potential of machine learning in the analysis of HRMS-DIA data.

摘要

液相色谱与高分辨率质谱联用(HRMS)能够实现数据非依赖性采集(DIA)和非靶向筛选。然而,为了避免处理由此产生的大数据集,该领域的大多数实验室仍然使用靶向筛选方法,这些方法具有良好的灵敏度和特异性,但仅限于已知化合物。机器学习这一充满前景的领域提供了新的可能性,例如人工神经网络,它可以经过训练来对大量数据进行分类。在这项概念验证研究中,我们举例说明了一种用于原始 HRMS-DIA 数据文件的机器学习方法。我们使用包含法医学毒理学中常见药物(滥用药物)的溶剂和全血样本的训练、验证和测试集来评估机器学习模型。为此,我们使用了不同的平台。我们的目标是使用前馈神经网络模型架构对类别进行预测(空白样本与含药样本)。通过应用机器学习方法,验证集和测试集的预测样本类别的灵敏度和特异性处于适用于(常规)实验室(例如工作场所药物检测)的实际使用的范围内。总之,这项概念验证研究清楚地证明了机器学习在 HRMS-DIA 数据分析中的巨大潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验