Suppr超能文献

衰老相关基因和非编码 RNA 在胰腺癌进展中发挥作用。

Senescence-associated genes and non-coding RNAs function in pancreatic cancer progression.

机构信息

Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China.

The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China.

出版信息

RNA Biol. 2020 Nov;17(11):1693-1706. doi: 10.1080/15476286.2020.1719752. Epub 2020 Jan 30.

Abstract

Pancreatic cancer is a major cause of mortality with a poor diagnosis and prognosis that most often occurs in elderly patients. Few studies, however, focus on the interplay of age and pancreatic cancer at the transcriptional level. Here we evaluated the possible roles of age-dependent, differentially expressed genes (DEGs) in pancreatic cancer. These DEGs were used to construct a correlation network and clustered in six gene modules, among which two modules were highly correlated with patients' survival time. Integrating different datasets, including ATAC-Seq and ChIP-Seq, we performed multi-parallel analyses and identified eight age-dependent protein coding genes and two non-coding RNAs as potential candidates. These candidates, together with KLF5, a potent functional transcription factor in pancreatic cancer, are likely to be key elements linking cellular senescence and pancreatic cancer, providing insights on the balance between them, as well as on diagnosis and subsequent prognosis of pancreatic cancer.

摘要

胰腺癌是一种主要的致死原因,其诊断和预后较差,大多数情况下发生在老年患者中。然而,很少有研究关注转录水平上年龄和胰腺癌之间的相互作用。在这里,我们评估了年龄依赖性差异表达基因(DEGs)在胰腺癌中的可能作用。这些 DEGs 用于构建相关网络,并聚类成六个基因模块,其中两个模块与患者的生存时间高度相关。通过整合不同的数据集,包括 ATAC-Seq 和 ChIP-Seq,我们进行了多平行分析,确定了 8 个年龄依赖性的蛋白编码基因和 2 个非编码 RNA 作为潜在的候选物。这些候选物,以及在胰腺癌中具有强大功能的转录因子 KLF5,可能是连接细胞衰老和胰腺癌的关键因素,为它们之间的平衡以及胰腺癌的诊断和后续预后提供了见解。

相似文献

1
Senescence-associated genes and non-coding RNAs function in pancreatic cancer progression.
RNA Biol. 2020 Nov;17(11):1693-1706. doi: 10.1080/15476286.2020.1719752. Epub 2020 Jan 30.
2
Linc00675 is a novel marker of short survival and recurrence in patients with pancreatic ductal adenocarcinoma.
World J Gastroenterol. 2015 Aug 21;21(31):9348-57. doi: 10.3748/wjg.v21.i31.9348.
3
4
Construction of pancreatic cancer double-factor regulatory network based on chip data on the transcriptional level.
Mol Biol Rep. 2014 May;41(5):2875-83. doi: 10.1007/s11033-014-3143-4. Epub 2014 Jan 28.
5
Genome-Wide Analysis Identified a Number of Dysregulated Long Noncoding RNA (lncRNA) in Human Pancreatic Ductal Adenocarcinoma.
Technol Cancer Res Treat. 2018 Jan 1;17:1533034617748429. doi: 10.1177/1533034617748429.
7
A comprehensive analysis of candidate genes and pathways in pancreatic cancer.
Tumour Biol. 2015 Mar;36(3):1849-57. doi: 10.1007/s13277-014-2787-y. Epub 2014 Nov 20.

引用本文的文献

1
Senescence-related circRNA circHIF-1α is associated with pancreatic cancer progression.
Cancer Cell Int. 2025 Jan 17;25(1):17. doi: 10.1186/s12935-025-03645-w.
2
Construction and validation of an aging-related gene signature predicting the prognosis of pancreatic cancer.
Front Genet. 2023 Jan 18;14:1022265. doi: 10.3389/fgene.2023.1022265. eCollection 2023.
3
RGL2 as an age-dependent factor regulates colon cancer progression.
Comput Struct Biotechnol J. 2021 Apr 8;19:2190-2201. doi: 10.1016/j.csbj.2021.04.006. eCollection 2021.
5
Bibliometric Analysis of ATAC-Seq and Its Use in Cancer Biology via Nucleic Acid Detection.
Front Med (Lausanne). 2020 Nov 3;7:584728. doi: 10.3389/fmed.2020.584728. eCollection 2020.
6
PLA2G16 is a mutant p53/KLF5 transcriptional target and promotes glycolysis of pancreatic cancer.
J Cell Mol Med. 2020 Nov;24(21):12642-12655. doi: 10.1111/jcmm.15832. Epub 2020 Sep 27.

本文引用的文献

1
Cistrome Data Browser: expanded datasets and new tools for gene regulatory analysis.
Nucleic Acids Res. 2019 Jan 8;47(D1):D729-D735. doi: 10.1093/nar/gky1094.
2
Long non-coding RNA H19 regulates endothelial cell aging via inhibition of STAT3 signalling.
Cardiovasc Res. 2019 Jan 1;115(1):230-242. doi: 10.1093/cvr/cvy206.
3
Functional Domains of NEAT1 Architectural lncRNA Induce Paraspeckle Assembly through Phase Separation.
Mol Cell. 2018 Jun 21;70(6):1038-1053.e7. doi: 10.1016/j.molcel.2018.05.019.
4
Altered hydroxymethylation is seen at regulatory regions in pancreatic cancer and regulates oncogenic pathways.
Genome Res. 2017 Nov;27(11):1830-1842. doi: 10.1101/gr.222794.117. Epub 2017 Oct 6.
5
Somatic Superenhancer Duplications and Hotspot Mutations Lead to Oncogenic Activation of the KLF5 Transcription Factor.
Cancer Discov. 2018 Jan;8(1):108-125. doi: 10.1158/2159-8290.CD-17-0532. Epub 2017 Sep 29.
6
ATRX is a regulator of therapy induced senescence in human cells.
Nat Commun. 2017 Aug 30;8(1):386. doi: 10.1038/s41467-017-00540-5.
7
A pathology atlas of the human cancer transcriptome.
Science. 2017 Aug 18;357(6352). doi: 10.1126/science.aan2507.
8
Enhancer Reprogramming Promotes Pancreatic Cancer Metastasis.
Cell. 2017 Aug 24;170(5):875-888.e20. doi: 10.1016/j.cell.2017.07.007. Epub 2017 Jul 27.
9
Cistrome Data Browser: a data portal for ChIP-Seq and chromatin accessibility data in human and mouse.
Nucleic Acids Res. 2017 Jan 4;45(D1):D658-D662. doi: 10.1093/nar/gkw983. Epub 2016 Oct 26.
10
GeneSCF: a real-time based functional enrichment tool with support for multiple organisms.
BMC Bioinformatics. 2016 Sep 13;17(1):365. doi: 10.1186/s12859-016-1250-z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验