Suppr超能文献

用于数字放射自显影片三维重建的客观图像对齐

Objective image alignment for three-dimensional reconstruction of digital autoradiograms.

作者信息

Hibbard L S, Hawkins R A

机构信息

Department of Radiology and Anesthesia, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey 17033.

出版信息

J Neurosci Methods. 1988 Nov;26(1):55-74. doi: 10.1016/0165-0270(88)90129-x.

Abstract

Autoradiography can generate large quantities of information related to brain metabolism, blood flow, transport across the blood-brain barrier, neurotransmitter-receptor binding and other aspects of brain function. Three-dimensional (3D) reconstruction of digitized autoradiograms provides a mechanism for efficient analysis of function, in detail, over the entire brain. 3D reconstructions of the mean and variance can be obtained by superimposing data from similar experiments, leading ultimately to 3D reconstructions of differences with statistical tests of significance. Image registration is essential for reconstruction, and this article reports two independent algorithms for coronal image alignment that have been successfully implemented in computer programs. The first algorithm superimposes the centroids and principal axes of serial images; the extent and direction of the translation and rotation required for each image is obtained from an analysis of the inertia matrix of that image. The second algorithm matches the edges of structure features in serial-adjacent images, from analyses of the cross-correlation function of each pair of adjacent images. The cross-correlation method requires a great deal more computation than the principal axes method, but it can align damaged sections not reliably treated by the principal axes method. The methods are described in detail, and a quantitative assessment of the registration of non-identical images is considered.

摘要

放射自显影术能够生成大量与脑代谢、血流、血脑屏障的物质转运、神经递质-受体结合以及脑功能的其他方面相关的信息。数字化放射自显影片的三维(3D)重建提供了一种机制,可对整个大脑的功能进行详细而高效的分析。通过叠加来自相似实验的数据,可以获得均值和方差的3D重建,最终通过显著性统计检验得到差异的3D重建。图像配准对于重建至关重要,本文报告了两种已在计算机程序中成功实现的用于冠状图像对齐的独立算法。第一种算法叠加序列图像的质心和主轴;通过对该图像惯性矩阵的分析,获取每张图像所需平移和旋转的程度与方向。第二种算法通过分析每对相邻图像的互相关函数,匹配序列相邻图像中结构特征的边缘。互相关方法比主轴方法需要更多的计算,但它能够对齐主轴方法无法可靠处理的受损切片。本文详细描述了这些方法,并考虑了对非相同图像配准的定量评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验