Suppr超能文献

重建的三维组织学切片图像与活体磁共振图像的大变形微分同胚度量映射配准

Large Deformation Diffeomorphic Metric Mapping Registration of Reconstructed 3D Histological Section Images and in vivo MR Images.

作者信息

Ceritoglu Can, Wang Lei, Selemon Lynn D, Csernansky John G, Miller Michael I, Ratnanather J Tilak

机构信息

Center for Imaging Science, The Johns Hopkins University Baltimore, MD, USA.

出版信息

Front Hum Neurosci. 2010 May 28;4:43. doi: 10.3389/fnhum.2010.00043. eCollection 2010.

Abstract

Our current understanding of neuroanatomical abnormalities in neuropsychiatric diseases is based largely on magnetic resonance imaging (MRI) and post mortem histological analyses of the brain. Further advances in elucidating altered brain structure in these human conditions might emerge from combining MRI and histological methods. We propose a multistage method for registering 3D volumes reconstructed from histological sections to corresponding in vivo MRI volumes from the same subjects: (1) manual segmentation of white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) compartments in histological sections, (2) alignment of consecutive histological sections using 2D rigid transformation to construct a 3D histological image volume from the aligned sections, (3) registration of reconstructed 3D histological volumes to the corresponding 3D MRI volumes using 3D affine transformation, (4) intensity normalization of images via histogram matching, and (5) registration of the volumes via intensity based large deformation diffeomorphic metric (LDDMM) image matching algorithm. Here we demonstrate the utility of our method in the transfer of cytoarchitectonic information from histological sections to identify regions of interest in MRI scans of nine adult macaque brains for morphometric analyses. LDDMM improved the accuracy of the registration via decreased distances between GM/CSF surfaces after LDDMM (0.39 +/- 0.13 mm) compared to distances after affine registration (0.76 +/- 0.41 mm). Similarly, WM/GM distances decreased to 0.28 +/- 0.16 mm after LDDMM compared to 0.54 +/- 0.39 mm after affine registration. The multistage registration method may find broad application for mapping histologically based information, for example, receptor distributions, gene expression, onto MRI volumes.

摘要

我们目前对神经精神疾病中神经解剖学异常的理解很大程度上基于磁共振成像(MRI)和大脑的死后组织学分析。在这些人类疾病中,阐明大脑结构改变的进一步进展可能来自于将MRI和组织学方法相结合。我们提出了一种多阶段方法,用于将从组织学切片重建的3D体积与同一受试者的相应活体MRI体积进行配准:(1)在组织学切片中手动分割白质(WM)、灰质(GM)和脑脊液(CSF)区域,(2)使用二维刚性变换对齐连续的组织学切片,以从对齐的切片构建3D组织学图像体积,(3)使用三维仿射变换将重建的3D组织学体积与相应的3D MRI体积进行配准,(4)通过直方图匹配对图像进行强度归一化,以及(5)通过基于强度的大变形微分同胚度量(LDDMM)图像匹配算法对体积进行配准。在这里,我们展示了我们的方法在从组织学切片转移细胞结构信息以识别九只成年猕猴大脑的MRI扫描中感兴趣区域进行形态计量分析方面的效用。与仿射配准后的距离(0.76±0.41毫米)相比,LDDMM通过减小GM/CSF表面之间的距离(0.39±0.13毫米)提高了配准的准确性。同样,与仿射配准后的0.54±0.39毫米相比,LDDMM后WM/GM距离减小到0.28±0.16毫米。这种多阶段配准方法可能会在将基于组织学的信息(例如受体分布、基因表达)映射到MRI体积上找到广泛应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68e0/2889720/a2a674f342c9/fnhum-04-00043-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验