Suppr超能文献

-突变型乳腺癌的差异表达基因和关键分子:来自生物信息学分析的证据

Differentially expressed genes and key molecules of -mutant breast cancer: evidence from bioinformatics analyses.

作者信息

Li Yue, Zhou Xiaoyan, Liu Jiali, Yin Yang, Yuan Xiaohong, Yang Ruihua, Wang Qi, Ji Jing, He Qian

机构信息

Department of Clinical Laboratories, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.

Department of Clinical Laboratories, XIAN XD Group Hospital, Xi'an, China.

出版信息

PeerJ. 2020 Jan 21;8:e8403. doi: 10.7717/peerj.8403. eCollection 2020.

Abstract

BACKGROUND

and genes are currently proven to be closely related to high lifetime risks of breast cancer. To date, the closely related genes to mutations in breast cancer remains to be fully elucidated. This study aims to identify the gene expression profiles and interaction networks influenced by mutations, so as to reflect underlying disease mechanisms and provide new biomarkers for breast cancer diagnosis or prognosis.

METHODS

Gene expression profiles from The Cancer Genome Atlas (TCGA) database were downloaded and combined with cBioPortal website to identify exact breast cancer patients with mutations. Gene set enrichment analysis (GSEA) was used to analyze some enriched pathways and biological processes associated mutations. For -mutant breast cancer, wild-type breast cancer and corresponding normal tissues, three independent differentially expressed genes (DEGs) analysis were performed to validate potential hub genes with each other. Protein-protein interaction (PPI) networks, survival analysis and diagnostic value assessment helped identify key genes associated with mutations.

RESULTS

The regulation process of cell cycle was significantly enriched in mutant group compared with wild-type group. A total of 294 genes were identified after analysis of DEGs between mutant patients and wild-type patients. Interestingly, by the other two comparisons, we identified 43 overlapping genes that not only significantly expressed in wild-type breast cancer patients relative to normal tissues, but more significantly expressed in -mutant breast patients. Based on the STRING database and cytoscape software, we constructed a PPI network using 294 DEGs. Through topological analysis scores of the PPI network and 43 overlapping genes, we sought to select some genes, thereby using survival analysis and diagnostic value assessment to identify key genes pertaining to -mutant breast cancer. , , , and displayed good prognostic/diagnostic value for breast cancer and -mutant breast cancer.

CONCLUSION

Our research provides comprehensive and new insights for the identification of biomarkers connected with mutations, availing diagnosis and treatment of breast cancer and -mutant breast cancer patients.

摘要

背景

目前已证实 基因和 基因与乳腺癌的高终生风险密切相关。迄今为止,与乳腺癌中 突变密切相关的基因仍有待充分阐明。本研究旨在识别受 突变影响的基因表达谱和相互作用网络,以反映潜在的疾病机制,并为乳腺癌的诊断或预后提供新的生物标志物。

方法

从癌症基因组图谱(TCGA)数据库下载基因表达谱,并与 cBioPortal 网站相结合,以确定具有 突变的精确乳腺癌患者。基因集富集分析(GSEA)用于分析与 突变相关的一些富集途径和生物学过程。对于 突变型乳腺癌、野生型乳腺癌及相应的正常组织,进行了三项独立的差异表达基因(DEG)分析,以相互验证潜在的枢纽基因。蛋白质-蛋白质相互作用(PPI)网络、生存分析和诊断价值评估有助于识别与 突变相关的关键基因。

结果

与野生型组相比,突变组中细胞周期的调控过程显著富集。在分析突变患者和野生型患者之间的差异表达基因后,共鉴定出 294 个基因。有趣的是,通过另外两项比较,我们鉴定出 43 个重叠基因,这些基因不仅在野生型乳腺癌患者中相对于正常组织显著表达,而且在 突变型乳腺癌患者中表达更显著。基于 STRING 数据库和 Cytoscape 软件,我们使用 294 个差异表达基因构建了一个 PPI 网络。通过 PPI 网络和 43 个重叠基因的拓扑分析得分,我们试图选择一些基因,从而利用生存分析和诊断价值评估来识别与 突变型乳腺癌相关的关键基因。 、 、 、 和 对乳腺癌和 突变型乳腺癌显示出良好的预后/诊断价值。

结论

我们的研究为识别与 突变相关的生物标志物提供了全面的新见解,有助于乳腺癌和 突变型乳腺癌患者的诊断和治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea2d/6979404/23d60bc19ba0/peerj-08-8403-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验