International Doctoral Innovation Centre, University of Nottingham Ningbo China, Ningbo, P. R. China.
Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, P. R. China.
Electrophoresis. 2020 Jun;41(10-11):891-901. doi: 10.1002/elps.201900403. Epub 2020 Feb 13.
Scale-up in droplet microfluidics achieved by increasing the number of devices running in parallel or increasing the droplet makers in the same device can compromise the narrow droplet-size distribution, or requires high fabrication cost, when glass- or polymer-based microdevices are used. This paper reports a novel way using parallelization of needle-based microfluidic systems to form highly monodispersed droplets with enhanced production rates yet in cost-effective way, even when forming higher order emulsions with complex inner structure. Parallelization of multiple needle-based devices could be realized by applying commercially available two-way connecters and 3D-printed four-way connectors. The production rates of droplets could be enhanced around fourfold (over 660 droplets/min) to eightfold (over 1300 droplets/min) by two-way connecters and four-way connectors, respectively, for the production of the same kind of droplets than a single droplet maker (160 droplets/min). Additionally, parallelization of four-needle sets with each needle specification ranging from 34G to 20G allows for simultaneous generation of four groups of PDMS microdroplets with each group having distinct size yet high monodispersity (CV < 3%). Up to six cores can be encapsulated in double emulsion using two parallelly connected devices via tuning the capillary number of middle phase in a range of 1.31 × 10 to 4.64 × 10 . This study leads to enhanced production yields of droplets and enables the formation of groups of droplets simultaneously to meet extensive needs of biomedical and environmental applications, such as microcapsules with variable dosages for drug delivery or drug screening, or microcapsules with wide range of absorbent loadings for water treatment.
在使用基于玻璃或聚合物的微器件时,通过增加并行运行的设备数量或增加同一设备中的液滴生成器,可以实现液滴微流控的放大,但这可能会影响到狭窄的液滴尺寸分布,或者需要高制造成本。本文报道了一种使用基于针的微流控系统并行化的新方法,即使在形成具有复杂内部结构的高阶乳液时,也可以以经济有效的方式形成具有增强的生产速率且高度单分散的液滴。通过应用市售的双向连接器和 3D 打印的四向连接器,可以实现多个基于针的设备的并行化。通过双向连接器和四向连接器,液滴的生产速率可以分别提高约四倍(超过 660 个/分钟)和八倍(超过 1300 个/分钟),与单个液滴生成器(160 个/分钟)相比,可以生产相同类型的液滴。此外,四针组的并行化,每个针的规格从 34G 到 20G,可以同时生成四组 PDMS 微液滴,每组具有不同的尺寸,但具有很高的单分散性(CV<3%)。通过调节中间相的毛细数在 1.31×10 到 4.64×10 之间,可以在两个并行连接的设备中封装多达六个内核的双乳液。本研究提高了液滴的生产产量,并能够同时形成多个液滴组,以满足广泛的生物医学和环境应用的需求,例如用于药物输送或药物筛选的具有可变剂量的微胶囊,或用于水处理的具有宽吸收剂负载范围的微胶囊。