Suppr超能文献

将机器学习应用于临床乳腺 MRI:在可疑乳腺肿块中实现客观准确决策的潜力。

Implementation of machine learning into clinical breast MRI: Potential for objective and accurate decision-making in suspicious breast masses.

机构信息

Department of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

出版信息

PLoS One. 2020 Jan 30;15(1):e0228446. doi: 10.1371/journal.pone.0228446. eCollection 2020.

Abstract

We investigated whether the integration of machine learning (ML) into MRI interpretation can provide accurate decision rules for the management of suspicious breast masses. A total of 173 consecutive patients with suspicious breast masses upon complementary assessment (BI-RADS IV/V: n = 100/76) received standardized breast MRI prior to histological verification. MRI findings were independently assessed by two observers (R1/R2: 5 years of experience/no experience in breast MRI) using six (semi-)quantitative imaging parameters. Interobserver variability was studied by ICC (intraclass correlation coefficient). A polynomial kernel function support vector machine was trained to differentiate between benign and malignant lesions based on the six imaging parameters and patient age. Ten-fold cross-validation was applied to prevent overfitting. Overall diagnostic accuracy and decision rules (rule-out criteria) to accurately exclude malignancy were evaluated. Results were integrated into a web application and published online. Malignant lesions were present in 107 patients (60.8%). Imaging features showed excellent interobserver variability (ICC: 0.81-0.98) with variable diagnostic accuracy (AUC: 0.65-0.82). Overall performance of the ML algorithm was high (AUC = 90.1%; BI-RADS IV: AUC = 91.6%). The ML algorithm provided decision rules to accurately rule-out malignancy with a false negative rate <1% in 31.3% of the BI-RADS IV cases. Thus, integration of ML into MRI interpretation can provide objective and accurate decision rules for the management of suspicious breast masses, and could help to reduce the number of potentially unnecessary biopsies.

摘要

我们研究了将机器学习(ML)集成到 MRI 解释中是否可以为可疑乳腺肿块的管理提供准确的决策规则。在组织学验证之前,共有 173 名经补充评估后(BI-RADS IV/V:n = 100/76)怀疑有乳腺肿块的连续患者接受了标准化的乳腺 MRI 检查。MRI 结果由两名观察者(R1/R2:分别具有 5 年和无乳腺 MRI 经验)使用六个(半)定量成像参数进行独立评估。使用 ICC(组内相关系数)研究了观察者间的变异性。基于六个成像参数和患者年龄,训练了一个多项式核函数支持向量机来区分良性和恶性病变。应用十折交叉验证防止过度拟合。评估了整体诊断准确性和准确排除恶性肿瘤的决策规则(排除标准)。结果整合到一个网络应用程序中并在线发布。107 名患者(60.8%)存在恶性病变。成像特征显示出极好的观察者间变异性(ICC:0.81-0.98),诊断准确性(AUC:0.65-0.82)不同。ML 算法的整体性能较高(AUC = 90.1%;BI-RADS IV:AUC = 91.6%)。该 ML 算法提供了决策规则,可以准确排除恶性肿瘤,在 31.3%的 BI-RADS IV 病例中假阴性率<1%。因此,将 ML 集成到 MRI 解释中可以为可疑乳腺肿块的管理提供客观准确的决策规则,并有助于减少潜在不必要的活检数量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b49/6992224/eacb7c572596/pone.0228446.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验