Suppr超能文献

基于 EEG 复杂度作为生物标志物预测强迫症患者的治疗抵抗。

Prediction of treatment resistance in obsessive compulsive disorder patients based on EEG complexity as a biomarker.

机构信息

Uskudar University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey.

Uskudar University, Faculty of Humanities and Social Sciences, Department of Psychology, Istanbul, Turkey.

出版信息

Clin Neurophysiol. 2020 Mar;131(3):716-724. doi: 10.1016/j.clinph.2019.11.063. Epub 2020 Jan 13.

Abstract

OBJECTIVE

This study aimed to identify an Electroencephalography (EEG) complexity biomarker that could predict treatment resistance in Obsessive compulsive disorder (OCD) patients. Additionally, the statistical differences between EEG complexity values in treatment-resistant and treatment-responsive patients were determined. Moreover, the existence of correlations between EEG complexity and Yale-Brown Obsessive Compulsive Scale (YBOCS) score were evaluated.

METHODS

EEG data for 29 treatment-resistant and 28 treatment-responsive OCD patients were retrospectively evaluated. Approximate entropy (ApEn) method was used to extract the EEG complexity from both whole EEG data and filtered EEG data, according to 4 common frequency bands, namely delta, theta, alpha, and beta. The random forests method was used to classify ApEn complexity.

RESULTS

ApEn complexity extracted from beta band EEG segments discriminated treatment-responsive and treatment-resistant OCD patients with an accuracy of 89.66% (sensitivity: 89.44%; specificity: 90.64%). Beta band EEG complexity was lower in the treatment-resistant patients and the severity of OCD, as measured by YBOCS score, was inversely correlated with complexity values.

CONCLUSIONS

The results indicate that, EEG complexity could be considered a biomarker for predicting treatment response in OCD patients.

SIGNIFICANCE

The prediction of treatment response in OCD patients might help clinicians devise and administer individualized treatment plans.

摘要

目的

本研究旨在确定脑电图(EEG)复杂度生物标志物,以预测强迫症(OCD)患者的治疗抵抗。此外,还确定了治疗抵抗和治疗反应患者之间 EEG 复杂度值的统计学差异。此外,评估了 EEG 复杂度与耶鲁-布朗强迫症量表(YBOCS)评分之间的相关性。

方法

回顾性评估了 29 例治疗抵抗和 28 例治疗反应 OCD 患者的 EEG 数据。使用近似熵(ApEn)方法从整个 EEG 数据和根据 4 个常见频带(即 delta、theta、alpha 和 beta)滤波的 EEG 数据中提取 EEG 复杂度。使用随机森林方法对 ApEn 复杂度进行分类。

结果

从 beta 波段 EEG 段提取的 ApEn 复杂度以 89.66%的准确率(灵敏度:89.44%;特异性:90.64%)区分了治疗反应和治疗抵抗的 OCD 患者。治疗抵抗患者的 beta 波段 EEG 复杂度较低,且 OCD 的严重程度(由 YBOCS 评分衡量)与复杂度值呈负相关。

结论

结果表明,EEG 复杂度可作为预测 OCD 患者治疗反应的生物标志物。

意义

预测 OCD 患者的治疗反应可能有助于临床医生制定和实施个体化的治疗计划。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验