Suppr超能文献

一种新颖的方法来测量术前抗菌预防措施:将文本搜索与退伍军人健康管理局电子病历中的结构化数据相结合。

Novel methodology to measure pre-procedure antimicrobial prophylaxis: integrating text searches with structured data from the Veterans Health Administration's electronic medical record.

机构信息

VA Boston Healthcare System, Center for Healthcare Organization and Implementation Research (CHOIR), 150 S. Huntington Ave, Boston, MA, 02130, USA.

Department of Surgery, Boston University School of Medicine, Boston, MA, USA.

出版信息

BMC Med Inform Decis Mak. 2020 Jan 30;20(1):15. doi: 10.1186/s12911-020-1031-5.

Abstract

BACKGROUND

Antimicrobial prophylaxis is an evidence-proven strategy for reducing procedure-related infections; however, measuring this key quality metric typically requires manual review, due to the way antimicrobial prophylaxis is documented in the electronic medical record (EMR). Our objective was to electronically measure compliance with antimicrobial prophylaxis using both structured and unstructured data from the Veterans Health Administration (VA) EMR. We developed this methodology for cardiac device implantation procedures.

METHODS

With clinician input and review of clinical guidelines, we developed a list of antimicrobial names recommended for the prevention of cardiac device infection. We trained the algorithm using existing fiscal year (FY) 2008-15 data from the VA Clinical Assessment Reporting and Tracking-Electrophysiology (CART-EP), which contains manually determined information about antimicrobial prophylaxis. We merged CART-EP data with EMR data and programmed statistical software to flag an antimicrobial orders or drug fills from structured data fields in the EMR and hits on text string searches of antimicrobial names documented in clinician's notes. We iteratively tested combinations of these data elements to optimize an algorithm to accurately classify antimicrobial use. The final algorithm was validated in a national cohort of VA cardiac device procedures from FY2016-2017. Discordant cases underwent expert manual review to identify reasons for algorithm misclassification.

RESULTS

The CART-EP dataset included 2102 procedures at 38 VA facilities with manually identified antimicrobial prophylaxis in 2056 cases (97.8%). The final algorithm combining structured EMR fields and text note search results correctly classified 2048 of the CART-EP cases (97.4%). In the validation sample, the algorithm measured compliance with antimicrobial prophylaxis in 16,606 of 18,903 cardiac device procedures (87.8%). Misclassification was due to EMR documentation issues, such as antimicrobial prophylaxis documented only in hand-written clinician notes in a format that cannot be electronically searched.

CONCLUSIONS

We developed a methodology with high accuracy to measure guideline concordant use of antimicrobial prophylaxis before cardiac device procedures using data fields present in modern EMRs. This method can replace manual review in quality measurement in the VA and other healthcare systems with EMRs; further, this method could be adapted to measure compliance in other procedural areas where antimicrobial prophylaxis is recommended.

摘要

背景

抗菌预防是减少与手术相关感染的一种有证据支持的策略;然而,由于抗菌预防在电子病历(EMR)中的记录方式,通常需要手动审查来衡量这一关键质量指标。我们的目标是使用退伍军人事务部(VA)EMR 中的结构化和非结构化数据,从电子方式来衡量抗菌预防的依从性。我们为心脏设备植入手术开发了这种方法。

方法

在临床医生的投入和对临床指南的审查的基础上,我们制定了一份预防心脏设备感染的抗菌药物推荐名称清单。我们使用 VA 临床评估报告和跟踪-电生理学(CART-EP)的现有财政年度(FY)2008-15 数据(包含关于抗菌预防的手动确定的信息)来训练算法。我们将 CART-EP 数据与 EMR 数据合并,并使用统计软件编程来标记 EMR 结构化数据字段中的抗菌药物订单或药物填写以及临床医生记录中抗菌药物名称的文本字符串搜索命中。我们迭代测试这些数据元素的组合,以优化算法来准确分类抗菌药物的使用。该最终算法在 FY2016-2017 年的全国退伍军人事务部心脏设备手术队列中进行了验证。不一致的病例接受了专家手动审查,以确定算法分类错误的原因。

结果

CART-EP 数据集包括 38 个 VA 设施的 2102 例手术,其中 2056 例(97.8%)有手动确定的抗菌预防措施。结合结构化 EMR 字段和文本注释搜索结果的最终算法正确分类了 2048 例 CART-EP 病例(97.4%)。在验证样本中,该算法测量了 18903 例心脏设备手术中的 16606 例(87.8%)符合抗菌预防规定。分类错误是由于 EMR 文档问题引起的,例如仅在手写临床医生笔记中记录的抗菌预防措施,且格式无法进行电子搜索。

结论

我们使用现代 EMR 中存在的数据字段,开发了一种准确性高的方法来衡量心脏设备手术前指南一致使用抗菌预防措施的情况。这种方法可以替代 VA 和其他有 EMR 的医疗保健系统中的手动审查,用于质量测量;此外,这种方法可以适用于其他推荐使用抗菌预防措施的手术领域的依从性测量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a32/6993312/5420c553323d/12911_2020_1031_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验