Suppr超能文献

基于压缩感知的稀疏数据内窥光声断层成像图像重建

Image reconstruction based on compressed sensing for sparse-data endoscopic photoacoustic tomography.

作者信息

Zheng Sun, Xiangyang Yan

机构信息

Department of Electronic and Communication Engineering, North China Electric Power University, Baoding, 071003, China.

Department of Electronic and Communication Engineering, North China Electric Power University, Baoding, 071003, China.

出版信息

Comput Biol Med. 2020 Jan;116:103587. doi: 10.1016/j.compbiomed.2019.103587. Epub 2019 Dec 19.

Abstract

Endoscopic photoacoustic tomography (EPAT) is an interventional application of photoacoustic tomography (PAT) to visualize anatomical features and functional components of biological cavity structures such as nasal cavity, digestive tract or coronary arterial vessels. One of the main challenges in clinical applicability of EPAT is the incomplete acoustic measurements due to the limited detectors or the limited-view acoustic detection enclosed in the cavity. In this case, conventional image reconstruction methodologies suffer from significantly degraded image quality. This work introduces a compressed-sensing (CS)-based method to reconstruct a high-quality image that represents the initial pressure distribution on a luminal cross-section from incomplete discrete acoustic measurements. The method constructs and trains a complete dictionary for the sparse representation of the photoacoustically-induced acoustic measurements. The sparse representation of the complete acoustic signals is then optimally obtained based on the sparse measurements and a sensing matrix. The complete acoustic signals are recovered from the sparse representation by inverse sparse transformation. The image of the initial pressure distribution is finally reconstructed from the recovered complete signals by using the time reversal (TR) algorithm. It was shown with numerical experiments that high-quality images with reduced under-sampling artifacts can be reconstructed from sparse measurements. The comparison results suggest that the proposed method outperforms the standard TR reconstruction by 40% in terms of the structural similarity of the reconstructed images.

摘要

内镜光声断层扫描(EPAT)是光声断层扫描(PAT)的一种介入应用,用于可视化生物腔结构(如鼻腔、消化道或冠状动脉血管)的解剖特征和功能成分。EPAT临床应用的主要挑战之一是由于探测器有限或腔内有限视角的声学检测导致声学测量不完整。在这种情况下,传统的图像重建方法会导致图像质量显著下降。这项工作引入了一种基于压缩感知(CS)的方法,用于从不完整的离散声学测量中重建高质量图像,该图像代表管腔横截面上的初始压力分布。该方法构建并训练一个完整的字典,用于光声诱导声学测量的稀疏表示。然后,基于稀疏测量和传感矩阵,最优地获得完整声学信号的稀疏表示。通过逆稀疏变换从稀疏表示中恢复完整的声学信号。最后,使用时间反转(TR)算法从恢复的完整信号中重建初始压力分布的图像。数值实验表明,从稀疏测量中可以重建出具有减少欠采样伪影的高质量图像。比较结果表明,就重建图像的结构相似性而言,所提出的方法比标准TR重建方法性能优40%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验