Suppr超能文献

基于改进压缩感知的稀疏视角 CT 图像重建算法。

Improved compressed sensing-based algorithm for sparse-view CT image reconstruction.

机构信息

Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, Canada S7N 5A9.

出版信息

Comput Math Methods Med. 2013;2013:185750. doi: 10.1155/2013/185750. Epub 2013 Mar 31.

Abstract

In computed tomography (CT), there are many situations where reconstruction has to be performed with sparse-view data. In sparse-view CT imaging, strong streak artifacts may appear in conventionally reconstructed images due to limited sampling rate that compromises image quality. Compressed sensing (CS) algorithm has shown potential to accurately recover images from highly undersampled data. In the past few years, total-variation-(TV-) based compressed sensing algorithms have been proposed to suppress the streak artifact in CT image reconstruction. In this paper, we propose an efficient compressed sensing-based algorithm for CT image reconstruction from few-view data where we simultaneously minimize three parameters: the ℓ 1 norm, total variation, and a least squares measure. The main feature of our algorithm is the use of two sparsity transforms-discrete wavelet transform and discrete gradient transform. Experiments have been conducted using simulated phantoms and clinical data to evaluate the performance of the proposed algorithm. The results using the proposed scheme show much smaller streaking artifacts and reconstruction errors than other conventional methods.

摘要

在计算机断层扫描(CT)中,有许多情况需要使用稀疏视图数据进行重建。在稀疏视图 CT 成像中,由于采样率有限,会在传统重建图像中出现强条纹伪影,从而影响图像质量。压缩感知(CS)算法已显示出从高度欠采样数据中准确恢复图像的潜力。在过去的几年中,基于全变差(TV)的压缩感知算法已被提出用于抑制 CT 图像重建中的条纹伪影。本文提出了一种从少数视图数据中进行 CT 图像重建的高效基于压缩感知的算法,该算法同时最小化三个参数:ℓ1 范数、全变差和最小二乘度量。我们算法的主要特点是使用两种稀疏变换——离散小波变换和离散梯度变换。使用模拟体模和临床数据进行了实验,以评估所提出算法的性能。使用所提出方案的结果显示出比其他传统方法更小的条纹伪影和重建误差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e62/3626221/08e7362779ef/CMMM2013-185750.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验