Division of Nutritional Sceinces, Cornell University, Ithaca, New York.
Food Science and Human Nutrition Department, Center for Nutritional Sciences, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida.
Am J Physiol Gastrointest Liver Physiol. 2020 Apr 1;318(4):G673-G681. doi: 10.1152/ajpgi.00301.2019. Epub 2020 Jan 31.
Impaired manganese (Mn) homeostasis can result in excess Mn accumulation in specific brain regions and neuropathology. Maintaining Mn homeostasis and detoxification is dependent on effective Mn elimination. Specific metal transporters control Mn homeostasis. Human carriers of mutations in the metal transporter ZIP14 and whole body -knockout (WB-KO) mice display similar phenotypes, including spontaneous systemic and brain Mn overload and motor dysfunction. Initially, it was believed that Mn accumulation due to mutations was caused by impaired hepatobiliary Mn elimination. However, liver-specific -KO mice did not show systemic Mn accumulation or motor deficits. ZIP14 is highly expressed in the small intestine and is localized to the basolateral surface of enterocytes. Thus, we hypothesized that basolaterally localized ZIP14 in enterocytes provides another route for the elimination of Mn. Using wild-type and intestine-specific -KO (I-KO) mice, we have shown that ablation of intestinal is sufficient to cause systemic and brain Mn accumulation. The lack of intestinal ZIP14-mediated Mn excretion was compensated for by the hepatobiliary system; however, it was not sufficient to maintain Mn homeostasis. When supplemented with extra dietary Mn, I-KO mice displayed some motor dysfunctions and brain Mn accumulation based on both MRI imaging and chemical analysis, thus demonstrating the importance of intestinal ZIP14 as a route of Mn excretion. A defect in intestinal expresssion likely could contribute to the Parkinson-like Mn accumulation of manganism. Mn-induced parkinsonism is recognized as rising in frequency because of both environmental factors and genetic vulnerability; yet currently, there is no cure. We provide evidence in an integrative animal model that basolaterally localized ZIP14 regulates Mn excretion and detoxification and that deletion of intestinal ZIP14 leads to systemic and brain Mn accumulation, providing robust evidence for the indispensable role of intestinal ZIP14 in Mn excretion.
锰(Mn)稳态失衡可导致特定脑区 Mn 蓄积和神经病理学改变。维持 Mn 稳态和解毒依赖于有效的 Mn 清除。特定的金属转运体控制 Mn 稳态。金属转运体 ZIP14 突变的人类携带者和全身敲除(WB-KO)小鼠显示出相似的表型,包括自发性系统性和脑 Mn 过载以及运动功能障碍。最初,人们认为由于突变导致的 Mn 蓄积是由于肝肠 Mn 消除受损所致。然而,肝特异性 -KO 小鼠并未显示系统性 Mn 蓄积或运动缺陷。ZIP14 在小肠中高度表达,并定位于肠上皮细胞的基底外侧表面。因此,我们假设肠上皮细胞基底外侧定位的 ZIP14 为 Mn 消除提供了另一种途径。我们使用野生型和肠道特异性 -KO(I-KO)小鼠表明,肠内 缺失足以导致系统性和脑 Mn 蓄积。尽管肝肠系统能够补偿肠道 ZIP14 介导的 Mn 排泄,但不足以维持 Mn 稳态。当补充额外的膳食 Mn 时,I-KO 小鼠表现出一些运动功能障碍和脑 Mn 蓄积,这既基于 MRI 成像,也基于化学分析,从而证明了肠道 ZIP14 作为 Mn 排泄途径的重要性。肠道 表达缺陷可能导致类似帕金森病的锰蓄积。由于环境因素和遗传易感性,锰诱导的帕金森病的发病率正在上升;然而,目前尚无治愈方法。我们在一个整合的动物模型中提供了证据,表明基底外侧定位的 ZIP14 调节 Mn 排泄和解毒,并且肠道 ZIP14 的缺失导致系统性和脑 Mn 蓄积,为肠道 ZIP14 在 Mn 排泄中的不可或缺作用提供了有力证据。