Suppr超能文献

将回旋加速器 Ga 生产提升到新的水平:快速制备 Ga 固体靶材用于放射性示踪剂的制备。

Taking cyclotron Ga production to the next level: Expeditious solid target production of Ga for preparation of radiotracers.

机构信息

Department of Oncology, University of Alberta, 11560 University Ave, Edmonton, AB T6G 1Z2, Canada.

Department of Oncology, University of Alberta, 11560 University Ave, Edmonton, AB T6G 1Z2, Canada.

出版信息

Nucl Med Biol. 2020 Jan-Feb;80-81:24-31. doi: 10.1016/j.nucmedbio.2020.01.005. Epub 2020 Jan 22.

Abstract

INTRODUCTION

Gallium-68 is an important radionuclide for positron emission tomography (PET) with steadily increasing applications of Ga-based radiopharmaceuticals for clinical use. Current Ga sources are primarily Ge/Ga-generators, along with successful attempts of Ga production using a cyclotron. This study evaluated cyclotron Ga production and automated separation using expeditiously manufactured solid targets, demonstrates an order of magnitude improvement in yield compared to Ge/Ga generators, and presents a convenient alternative to existing cyclotron production processes. A comparison of radiolabeling and preclinical PET imaging was performed with both cyclotron and generator produced Ga.

METHODS

100 mg enriched Zn (99.3% Zn, 0.48% Zn, 0.1% Zn) pellets pressed on silver discs were bombarded for 20-75 min using 12.5 MeV proton beam energies and 10-30 μA currents. Ga was separated using an automated TRASIS AllinOne synthesizer employing AG 50W-X8 and UTEVA resins. Post-separation recovery of the Zn by electrolysis yielded 76.7 ± 4.3%. Radionuclidic purity of cyclotron-produced Ga was investigated with gamma spectroscopy using a HPGe-detector. Radiolabeling was investigated using the macrocyclic chelator DOTA and the bombesin-derived peptide NOTA-BBN2. PET imaging was performed using [Ga]Ga-NOTA-BBN2 in a PC3 xenograft model.

RESULTS

600 μA·min fresh and recycled quadruplet Zn target irradiations (n = 8) at 12.5 MeV and 30 μA yielded 13.9 ± 1.0 GBq Ga; 2200 μA·min irradiations (n = 3) yielded 37.5 ± 1.9 GBq Ga. HPGe analysis showed EOB 0.0074% and 0.0084% of total activity of Ga and Ga, respectively. Metal impurities were 0.06 ± 0.03 μg/GBq Zn, 0.13 ± 0.007 μg/GBq Fe, and 0.02 ± 0.01 μg/GBq Al for cyclotron Ga. Cyclotron and Ge/Ga generator Ga respective DOTA and NOTA-BBN2 labeling incorporations were 99.4 ± 0.0% and 99.3 ± 0.2%, and 90.4 ± 1.5% and 93.0 ± 3.6% determined by radio-thin layer chromatography (radio-TLC). Preclinical PET imaging comparison between generator and cyclotron produced Ga showed identical radiotracer tumor uptake and biodistribution profiles in PC3 tumor bearing mice.

CONCLUSIONS

Cyclotron Ga production provides highly scalable production with equivalent or superior quality Ga to a Ge/Ga generator, while providing identical biodistribution and tumor uptake profiles. Our described targetry is simpler and more cost-effective than existing liquid and solid targetry, enabling a turnkey production system for multi-facility distribution of cyclotron produced Ga. The manufacturing simplicity described has potential applications for producing other radiometals such as Sc.

ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE

Our cost-effective method of solid target Ga production can enhance Ga production capabilities to meet the high demand for Ga-radiopharmaceuticals for research and clinical use.

摘要

简介

镓-68 是正电子发射断层扫描(PET)的重要放射性核素,基于 Ga 的放射性药物在临床应用中的应用也在稳步增加。目前的 Ga 源主要是锗/镓发生器,同时也成功尝试了使用回旋加速器生产 Ga。本研究评估了回旋加速器 Ga 的生产和使用快速制造的固体靶材进行的自动分离,与锗/镓发生器相比,产量提高了一个数量级,并为现有的回旋加速器生产工艺提供了一种便捷的替代方案。比较了回旋加速器和发生器生产的 Ga 的放射性标记和临床前 PET 成像。

方法

用 12.5 MeV 质子束能量和 10-30 μA 电流辐照 100 mg 富集 Zn(99.3% Zn、0.48% Zn、0.1% Zn)压片的银盘 20-75 min。使用自动化 TRASIS AllinOne 合成仪,采用 AG 50W-X8 和 UTEVA 树脂分离 Ga。通过电解回收 Zn 的后分离回收率为 76.7±4.3%。使用 HPGe 探测器的伽马能谱研究回旋加速器生产的 Ga 的放射性核纯度。使用大环螯合剂 DOTA 和 bombesin 衍生的肽 NOTA-BBN2 研究放射性标记。使用 [Ga]Ga-NOTA-BBN2 在 PC3 异种移植模型中进行 PET 成像。

结果

12.5 MeV 和 30 μA 时,4 个新鲜和循环四重 Zn 靶的 600 μA·min 辐照(n=8)产生 13.9±1.0 GBq Ga;3 个 2200 μA·min 辐照(n=3)产生 37.5±1.9 GBq Ga。HPGe 分析表明,Ga 和 Ga 的总活度分别为 EOB 0.0074%和 0.0084%。金属杂质分别为 0.06±0.03μg/GBq Zn、0.13±0.007μg/GBq Fe 和 0.02±0.01μg/GBq Al。回旋加速器 Ga 的 DOTA 和 NOTA-BBN2 标记掺入率分别为 99.4±0.0%和 99.3±0.2%,通过放射性薄层色谱(radio-TLC)测定分别为 90.4±1.5%和 93.0±3.6%。发生器和回旋加速器产生的 Ga 之间的临床前 PET 成像比较显示,在 PC3 荷瘤小鼠中,放射性示踪剂肿瘤摄取和生物分布具有相同的特征。

结论

回旋加速器 Ga 生产提供了高度可扩展的生产,与 Ge/Ga 发生器相比,Ga 的质量相同或更高,同时提供了相同的生物分布和肿瘤摄取特征。我们描述的靶材比现有的液体和固体靶材更简单、更具成本效益,为回旋加速器生产 Ga 的多设施分布提供了一个交钥匙生产系统。所描述的制造简单性具有用于生产其他放射性金属(如 Sc)的潜在应用。

知识的进步及其对患者护理的影响

我们经济高效的 Ga 固体靶生产方法可以提高 Ga 生产能力,以满足研究和临床应用对 Ga 放射性药物的高需求。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验