Suppr超能文献

细胞凋亡和溶细胞性细胞死亡的定量相动力学。

The Quantitative-Phase Dynamics of Apoptosis and Lytic Cell Death.

机构信息

Department of Pathological Physiology, Faculty of Medicine, Masaryk University/Kamenice 5, CZ-625 00, Brno, Czech Republic.

Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3058/10, Brno, Czech Republic.

出版信息

Sci Rep. 2020 Jan 31;10(1):1566. doi: 10.1038/s41598-020-58474-w.

Abstract

Cell viability and cytotoxicity assays are highly important for drug screening and cytotoxicity tests of antineoplastic or other therapeutic drugs. Even though biochemical-based tests are very helpful to obtain preliminary preview, their results should be confirmed by methods based on direct cell death assessment. In this study, time-dependent changes in quantitative phase-based parameters during cell death were determined and methodology useable for rapid and label-free assessment of direct cell death was introduced. The goal of our study was distinction between apoptosis and primary lytic cell death based on morphologic features. We have distinguished the lytic and non-lytic type of cell death according to their end-point features (Dance of Death typical for apoptosis versus swelling and membrane rupture typical for all kinds of necrosis common for necroptosis, pyroptosis, ferroptosis and accidental cell death). Our method utilizes Quantitative Phase Imaging (QPI) which enables the time-lapse observation of subtle changes in cell mass distribution. According to our results, morphological and dynamical features extracted from QPI micrographs are suitable for cell death detection (76% accuracy in comparison with manual annotation). Furthermore, based on QPI data alone and machine learning, we were able to classify typical dynamical changes of cell morphology during both caspase 3,7-dependent and -independent cell death subroutines. The main parameters used for label-free detection of these cell death modalities were cell density (pg/pixel) and average intensity change of cell pixels further designated as Cell Dynamic Score (CDS). To the best of our knowledge, this is the first study introducing CDS and cell density as a parameter typical for individual cell death subroutines with prediction accuracy 75.4% for caspase 3,7-dependent and -independent cell death.

摘要

细胞活力和细胞毒性测定对于药物筛选和抗肿瘤或其他治疗药物的细胞毒性测试非常重要。尽管基于生化的测试对于获得初步预览非常有帮助,但它们的结果应该通过基于直接细胞死亡评估的方法来确认。在这项研究中,确定了细胞死亡过程中基于定量相位的参数的时间依赖性变化,并介绍了可用于快速和无标记评估直接细胞死亡的方法。我们研究的目的是根据形态特征区分细胞凋亡和原发性溶细胞死亡。我们根据终点特征区分了溶细胞和非溶细胞死亡类型(凋亡的死亡之舞与各种坏死的肿胀和膜破裂典型特征,坏死性凋亡、细胞焦亡、铁死亡和意外细胞死亡)。我们的方法利用定量相位成像(QPI)来实现对细胞质量分布细微变化的实时观察。根据我们的结果,从 QPI 显微照片中提取的形态和动态特征适用于细胞死亡检测(与手动注释相比准确率为 76%)。此外,仅基于 QPI 数据和机器学习,我们能够对 caspase 3、7 依赖性和非依赖性细胞死亡子程序期间细胞形态的典型动力学变化进行分类。用于无标记检测这些细胞死亡方式的主要参数是细胞密度(pg/像素)和细胞像素的平均强度变化,进一步指定为细胞动态评分(CDS)。据我们所知,这是首次介绍 CDS 和细胞密度作为与预测准确率为 75.4%的 caspase 3、7 依赖性和非依赖性细胞死亡相关的各个细胞死亡子程序的典型参数的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cee/6994697/e840134db184/41598_2020_58474_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验