Suppr超能文献

休眠与活跃人类癌细胞的延时、无标记、定量相成像研究

A Time-lapse, Label-free, Quantitative Phase Imaging Study of Dormant and Active Human Cancer Cells.

作者信息

Huang Jing, Guo Peng, Moses Marsha A

机构信息

Vascular Biology Program, Boston Children's Hospital; Department of Surgery, Harvard Medical School and Boston Children's Hospital.

Vascular Biology Program, Boston Children's Hospital; Department of Surgery, Harvard Medical School and Boston Children's Hospital;

出版信息

J Vis Exp. 2018 Feb 16(132):57035. doi: 10.3791/57035.

Abstract

The acquisition of the angiogenic phenotype is an essential component of the escape from tumor dormancy. Although several classic in vitro assays (e.g., proliferation, migration, and others) and in vivo models have been developed to investigate and characterize angiogenic and non-angiogenic cell phenotypes, these methods are time and labor intensive, and often require expensive reagents and instruments, as well as significant expertise. In a recent study, we used a novel quantitative phase imaging (QPI) technique to conduct time-lapse and labeling-free characterizations of angiogenic and non-angiogenic human osteosarcoma KHOS cells. A panel of cellular parameters, including cell morphology, proliferation, and motility, were quantitatively measured and analyzed using QPI. This novel and quantitative approach provides the opportunity to continuously and non-invasively study relevant cellular processes, behaviors, and characteristics of cancer cells and other cell types in a simple and integrated manner. This report describes our experimental protocol, including cell preparation, QPI acquisition, and data analysis.

摘要

获得血管生成表型是肿瘤从休眠状态逃逸的一个重要组成部分。尽管已经开发了几种经典的体外试验(如增殖、迁移等)和体内模型来研究和表征血管生成和非血管生成细胞表型,但这些方法耗时费力,通常需要昂贵的试剂和仪器,以及专业的技术。在最近的一项研究中,我们使用了一种新型的定量相成像(QPI)技术,对血管生成和非血管生成的人骨肉瘤KHOS细胞进行了延时和无标记表征。使用QPI对包括细胞形态、增殖和运动性在内的一系列细胞参数进行了定量测量和分析。这种新颖的定量方法提供了一个机会,以简单和综合的方式连续、无创地研究癌细胞和其他细胞类型的相关细胞过程、行为和特征。本报告描述了我们的实验方案,包括细胞制备、QPI采集和数据分析。

相似文献

2
Characterization of dormant and active human cancer cells by quantitative phase imaging.
Cytometry A. 2017 May;91(5):424-432. doi: 10.1002/cyto.a.23083. Epub 2017 Mar 17.
4
Perspective on quantitative phase imaging to improve precision cancer medicine.
J Biomed Opt. 2024 Jun;29(Suppl 2):S22705. doi: 10.1117/1.JBO.29.S2.S22705. Epub 2024 Mar 26.
5
Single-shot quantitative phase imaging as an extension of differential interference contrast microscopy.
Genes Cells. 2021 Aug;26(8):596-610. doi: 10.1111/gtc.12876. Epub 2021 Jul 2.
6
Time-lapse lens-free imaging of cell migration in diverse physical microenvironments.
Lab Chip. 2016 Aug 16;16(17):3304-16. doi: 10.1039/c6lc00860g.
7
Low-cost motility tracking system (LOCOMOTIS) for time-lapse microscopy applications and cell visualisation.
PLoS One. 2014 Aug 14;9(8):e103547. doi: 10.1371/journal.pone.0103547. eCollection 2014.
8
In Vivo Electroporation and Time-Lapse Imaging of the Rostral Migratory Stream in Developing Rodent Brain.
Curr Protoc Neurosci. 2019 Apr;87(1):e65. doi: 10.1002/cpns.65. Epub 2019 Mar 12.
10
The Quantitative-Phase Dynamics of Apoptosis and Lytic Cell Death.
Sci Rep. 2020 Jan 31;10(1):1566. doi: 10.1038/s41598-020-58474-w.

引用本文的文献

2
Therapeutic genome editing of triple-negative breast tumors using a noncationic and deformable nanolipogel.
Proc Natl Acad Sci U S A. 2019 Sep 10;116(37):18295-18303. doi: 10.1073/pnas.1904697116. Epub 2019 Aug 26.
4
ITGA2 as a potential nanotherapeutic target for glioblastoma.
Sci Rep. 2019 Apr 17;9(1):6195. doi: 10.1038/s41598-019-42643-7.
5
Migratory Metrics of Wound Healing: A Quantification Approach for Scratch Assays.
Front Oncol. 2018 Dec 18;8:633. doi: 10.3389/fonc.2018.00633. eCollection 2018.

本文引用的文献

1
Characterization of dormant and active human cancer cells by quantitative phase imaging.
Cytometry A. 2017 May;91(5):424-432. doi: 10.1002/cyto.a.23083. Epub 2017 Mar 17.
3
Prediction of prostate cancer recurrence using quantitative phase imaging.
Sci Rep. 2015 May 15;5:9976. doi: 10.1038/srep09976.
5
Digital holographic microscopy for non-invasive monitoring of cell cycle arrest in L929 cells.
PLoS One. 2014 Sep 10;9(9):e106546. doi: 10.1371/journal.pone.0106546. eCollection 2014.
6
Highly sensitive quantitative imaging for monitoring single cancer cell growth kinetics and drug response.
PLoS One. 2014 Feb 18;9(2):e89000. doi: 10.1371/journal.pone.0089000. eCollection 2014.
8
Transcriptional changes induced by the tumor dormancy-associated microRNA-190.
Transcription. 2013 Jul-Aug;4(4):177-91. doi: 10.4161/trns.25558. Epub 2013 Jul 1.
9
Optical-mechanical signatures of cancer cells based on fluctuation profiles measured by interferometry.
J Biophotonics. 2014 Aug;7(8):624-30. doi: 10.1002/jbio.201300019. Epub 2013 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验