Huang Jing, Guo Peng, Moses Marsha A
Vascular Biology Program, Boston Children's Hospital; Department of Surgery, Harvard Medical School and Boston Children's Hospital.
Vascular Biology Program, Boston Children's Hospital; Department of Surgery, Harvard Medical School and Boston Children's Hospital;
J Vis Exp. 2018 Feb 16(132):57035. doi: 10.3791/57035.
The acquisition of the angiogenic phenotype is an essential component of the escape from tumor dormancy. Although several classic in vitro assays (e.g., proliferation, migration, and others) and in vivo models have been developed to investigate and characterize angiogenic and non-angiogenic cell phenotypes, these methods are time and labor intensive, and often require expensive reagents and instruments, as well as significant expertise. In a recent study, we used a novel quantitative phase imaging (QPI) technique to conduct time-lapse and labeling-free characterizations of angiogenic and non-angiogenic human osteosarcoma KHOS cells. A panel of cellular parameters, including cell morphology, proliferation, and motility, were quantitatively measured and analyzed using QPI. This novel and quantitative approach provides the opportunity to continuously and non-invasively study relevant cellular processes, behaviors, and characteristics of cancer cells and other cell types in a simple and integrated manner. This report describes our experimental protocol, including cell preparation, QPI acquisition, and data analysis.
获得血管生成表型是肿瘤从休眠状态逃逸的一个重要组成部分。尽管已经开发了几种经典的体外试验(如增殖、迁移等)和体内模型来研究和表征血管生成和非血管生成细胞表型,但这些方法耗时费力,通常需要昂贵的试剂和仪器,以及专业的技术。在最近的一项研究中,我们使用了一种新型的定量相成像(QPI)技术,对血管生成和非血管生成的人骨肉瘤KHOS细胞进行了延时和无标记表征。使用QPI对包括细胞形态、增殖和运动性在内的一系列细胞参数进行了定量测量和分析。这种新颖的定量方法提供了一个机会,以简单和综合的方式连续、无创地研究癌细胞和其他细胞类型的相关细胞过程、行为和特征。本报告描述了我们的实验方案,包括细胞制备、QPI采集和数据分析。