Suppr超能文献

基于深度学习,利用二维多视图全息图像生成三维双折射图像。

Deep-learning based 3D birefringence image generation using 2D multi-view holographic images.

作者信息

Kim Hakdong, Jun Taeheul, Lee Hyoung, Chae Byung Gyu, Yoon MinSung, Kim Cheongwon

机构信息

Department of Digital Contents, Sejong University, Seoul, Korea.

Department of Software Convergence, Sejong University, Seoul, Korea.

出版信息

Sci Rep. 2024 Apr 30;14(1):9879. doi: 10.1038/s41598-024-60023-8.

Abstract

Refractive index stands as an inherent characteristic of a material, allowing non-invasive exploration of the three-dimensional (3D) interior of the material. Certain materials with different refractive indices produce a birefringence phenomenon in which incident light is split into two polarization components when it passes through the materials. Representative birefringent materials appear in calcite crystals, liquid crystals (LCs), biological tissues, silk fibers, polymer films, etc. If the internal 3D shape of these materials can be visually expressed through a non-invasive method, it can greatly contribute to the semiconductor, display industry, optical components and devices, and biomedical diagnosis. This paper introduces a novel approach employing deep learning to generate 3D birefringence images using multi-viewed holographic interference images. First, we acquired a set of multi-viewed holographic interference pattern images and a 3D volume image of birefringence directly from a polarizing DTT (dielectric tensor tomography)-based microscope system about each LC droplet sample. The proposed model was trained to generate the 3D volume images of birefringence using the two-dimensional (2D) interference pattern image set. Performance evaluations were conducted against the ground truth images obtained directly from the DTT microscopy. Visualization techniques were applied to describe the refractive index distribution in the generated 3D images of birefringence. The results show the proposed method's efficiency in generating the 3D refractive index distribution from multi-viewed holographic interference images, presenting a novel data-driven alternative to traditional methods from the DTT devices.

摘要

折射率是材料的固有特性,可用于对材料的三维(3D)内部进行非侵入式探测。某些具有不同折射率的材料会产生双折射现象,即入射光穿过这些材料时会分裂为两个偏振分量。典型的双折射材料有方解石晶体、液晶(LC)、生物组织、丝纤维、聚合物薄膜等。如果能够通过非侵入式方法直观地呈现这些材料的内部3D形状,将对半导体、显示产业、光学元件与器件以及生物医学诊断有极大的帮助。本文介绍了一种利用深度学习,通过多视角全息干涉图像生成3D双折射图像的新方法。首先,我们直接从基于偏振DTT(介电张量断层扫描)的显微镜系统获取了一组关于每个LC液滴样本的多视角全息干涉图案图像和一个双折射的3D体图像。所提出的模型经过训练,利用二维(2D)干涉图案图像集生成双折射的3D体图像。针对直接从DTT显微镜获得的真实图像进行了性能评估。应用可视化技术来描述生成的双折射3D图像中的折射率分布。结果表明,所提出的方法在从多视角全息干涉图像生成3D折射率分布方面具有效率,为来自DTT设备的传统方法提供了一种新的数据驱动替代方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c026/11059389/f1bb2f1a2fd0/41598_2024_60023_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验