Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China.
Department of Cardiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China.
Eur Radiol. 2020 May;30(5):2525-2534. doi: 10.1007/s00330-019-06571-4. Epub 2020 Jan 31.
To investigate the effect of image quality of coronary CT angiography (CCTA) on the diagnostic performance of a machine learning-based CT-derived fractional flow reserve (FFR).
This nationwide retrospective study enrolled participants from 10 individual centers across China. FFR analysis was performed in 570 vessels in 437 patients. Invasive FFR and FFR values ≤ 0.80 were considered ischemia-specific. Four-score subjective assessment based on image quality and objective measurement of vessel enhancement was performed on a per-vessel basis. The effects of body mass index (BMI), sex, heart rate, and coronary calcium score on the diagnostic performance of FFR were studied.
Among 570 vessels, 216 were considered ischemia-specific by invasive FFR and 198 by FFR. Sensitivity and specificity of FFR for detecting lesion-specific ischemia were 0.82 and 0.93, respectively. Area under the curve (AUC) of high-quality images (0.93, n = 159) was found to be superior to low-quality images (0.80, n = 92, p = 0.02). Objective image quality and heart rate were also associated with diagnostic performance of FFR, whereas there was no statistical difference in diagnostic performance among different BMI, sex, and calcium score groups (all p > 0.05, Bonferroni correction).
This retrospective multicenter study supported the FFR as a noninvasive test in evaluating lesion-specific ischemia. Subjective image quality, vessel enhancement, and heart rate affect the diagnostic performance of FFR.
• FFRcan be used to evaluate lesion-specific ischemia. • Poor image quality negatively affects the diagnostic performance of FFR. • CCTA with ≥ score 3, intracoronary enhancement degree of 300-400 HU, and heart rate below 70 bpm at scanning could be of great benefit to more accurate FFRanalysis.
探究冠状动脉 CT 血管造影(CCTA)图像质量对基于机器学习的 CT 衍生分数血流量储备(FFR)诊断性能的影响。
本项全国性回顾性研究纳入了来自中国 10 个独立中心的参与者。对 437 例患者的 570 支血管进行了 FFR 分析。以有创 FFR 和 FFR 值≤0.80 为缺血特异性指标。对每支血管进行基于图像质量的四分制主观评估和血管增强的客观测量。研究了体重指数(BMI)、性别、心率和冠状动脉钙评分对 FFR 诊断性能的影响。
在 570 支血管中,216 支血管通过有创 FFR 被认为存在缺血特异性,198 支血管通过 FFR 被认为存在缺血特异性。FFR 检测病变特异性缺血的敏感性和特异性分别为 0.82 和 0.93。高质量图像(n = 159)的曲线下面积(AUC)为 0.93,优于低质量图像(n = 92,AUC 为 0.80,p = 0.02)。客观图像质量和心率也与 FFR 的诊断性能相关,而不同 BMI、性别和钙评分组之间的 FFR 诊断性能无统计学差异(所有 p > 0.05,Bonferroni 校正)。
本回顾性多中心研究支持 FFR 作为评估病变特异性缺血的非侵入性检查。主观图像质量、血管增强和心率会影响 FFR 的诊断性能。