Suppr超能文献

整合分子模拟和实验数据:贝叶斯/最大熵重加权方法。

Integrating Molecular Simulation and Experimental Data: A Bayesian/Maximum Entropy Reweighting Approach.

机构信息

Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.

出版信息

Methods Mol Biol. 2020;2112:219-240. doi: 10.1007/978-1-0716-0270-6_15.

Abstract

We describe a Bayesian/Maximum entropy (BME) procedure and software to construct a conformational ensemble of a biomolecular system by integrating molecular simulations and experimental data. First, an initial conformational ensemble is constructed using, for example, Molecular Dynamics or Monte Carlo simulations. Due to potential inaccuracies in the model and finite sampling effects, properties predicted from simulations may not agree with experimental data. In BME we use the experimental data to refine the simulation so that the new conformational ensemble has the following properties: (1) the calculated averages are close to the experimental values taking uncertainty into account and (2) it maximizes the relative Shannon entropy with respect to the original simulation ensemble. The output of this procedure is a set of optimized weights that can be used to calculate other properties and distributions of these. Here, we provide a practical guide on how to obtain and use such weights, how to choose adjustable parameters and discuss shortcomings of the method.

摘要

我们描述了一种贝叶斯/最大熵(BME)方法和软件,通过整合分子模拟和实验数据来构建生物分子系统的构象系综。首先,使用例如分子动力学或蒙特卡罗模拟来构建初始构象系综。由于模型的潜在不准确和有限的采样效应,模拟预测的性质可能与实验数据不一致。在 BME 中,我们使用实验数据来改进模拟,以便新的构象系综具有以下特性:(1)计算平均值接近实验值,同时考虑不确定性,(2)相对于原始模拟系综最大化相对香农熵。该过程的输出是一组优化权重,可用于计算其他性质和这些性质的分布。在这里,我们提供了关于如何获得和使用这些权重、如何选择可调参数以及讨论该方法的缺点的实用指南。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验