Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.
Methods Mol Biol. 2020;2112:219-240. doi: 10.1007/978-1-0716-0270-6_15.
We describe a Bayesian/Maximum entropy (BME) procedure and software to construct a conformational ensemble of a biomolecular system by integrating molecular simulations and experimental data. First, an initial conformational ensemble is constructed using, for example, Molecular Dynamics or Monte Carlo simulations. Due to potential inaccuracies in the model and finite sampling effects, properties predicted from simulations may not agree with experimental data. In BME we use the experimental data to refine the simulation so that the new conformational ensemble has the following properties: (1) the calculated averages are close to the experimental values taking uncertainty into account and (2) it maximizes the relative Shannon entropy with respect to the original simulation ensemble. The output of this procedure is a set of optimized weights that can be used to calculate other properties and distributions of these. Here, we provide a practical guide on how to obtain and use such weights, how to choose adjustable parameters and discuss shortcomings of the method.
我们描述了一种贝叶斯/最大熵(BME)方法和软件,通过整合分子模拟和实验数据来构建生物分子系统的构象系综。首先,使用例如分子动力学或蒙特卡罗模拟来构建初始构象系综。由于模型的潜在不准确和有限的采样效应,模拟预测的性质可能与实验数据不一致。在 BME 中,我们使用实验数据来改进模拟,以便新的构象系综具有以下特性:(1)计算平均值接近实验值,同时考虑不确定性,(2)相对于原始模拟系综最大化相对香农熵。该过程的输出是一组优化权重,可用于计算其他性质和这些性质的分布。在这里,我们提供了关于如何获得和使用这些权重、如何选择可调参数以及讨论该方法的缺点的实用指南。