Wadman Renske I, van der Pol W Ludo, Bosboom Wendy Mj, Asselman Fay-Lynn, van den Berg Leonard H, Iannaccone Susan T, Vrancken Alexander Fje
University Medical Center Utrecht, Brain Center Rudolf Magnus, Department of Neurology, Heidelberglaan 100, Utrecht, Netherlands, 3584 CX.
Onze Lieve Vrouwe Gasthuis locatie West, Department of Neurology, Amsterdam, Netherlands.
Cochrane Database Syst Rev. 2020 Jan 6;1(1):CD006282. doi: 10.1002/14651858.CD006282.pub5.
Spinal muscular atrophy (SMA) is caused by a homozygous deletion of the survival motor neuron 1 (SMN1) gene on chromosome 5, or a heterozygous deletion in combination with a (point) mutation in the second SMN1 allele. This results in degeneration of anterior horn cells, which leads to progressive muscle weakness. Children with SMA type II do not develop the ability to walk without support and have a shortened life expectancy, whereas children with SMA type III develop the ability to walk and have a normal life expectancy. This is an update of a review first published in 2009 and previously updated in 2011.
To evaluate if drug treatment is able to slow or arrest the disease progression of SMA types II and III, and to assess if such therapy can be given safely.
We searched the Cochrane Neuromuscular Specialised Register, CENTRAL, MEDLINE, Embase, and ISI Web of Science conference proceedings in October 2018. In October 2018, we also searched two trials registries to identify unpublished trials.
We sought all randomised or quasi-randomised trials that examined the efficacy of drug treatment for SMA types II and III. Participants had to fulfil the clinical criteria and have a homozygous deletion or hemizygous deletion in combination with a point mutation in the second allele of the SMN1 gene (5q11.2-13.2) confirmed by genetic analysis. The primary outcome measure was change in disability score within one year after the onset of treatment. Secondary outcome measures within one year after the onset of treatment were change in muscle strength, ability to stand or walk, change in quality of life, time from the start of treatment until death or full-time ventilation and adverse events attributable to treatment during the trial period. Treatment strategies involving SMN1-replacement with viral vectors are out of the scope of this review, but a summary is given in Appendix 1. Drug treatment for SMA type I is the topic of a separate Cochrane Review.
We followed standard Cochrane methodology.
The review authors found 10 randomised, placebo-controlled trials of treatments for SMA types II and III for inclusion in this review, with 717 participants. We added four of the trials at this update. The trials investigated creatine (55 participants), gabapentin (84 participants), hydroxyurea (57 participants), nusinersen (126 participants), olesoxime (165 participants), phenylbutyrate (107 participants), somatotropin (20 participants), thyrotropin-releasing hormone (TRH) (nine participants), valproic acid (33 participants), and combination therapy with valproic acid and acetyl-L-carnitine (ALC) (61 participants). Treatment duration was from three to 24 months. None of the studies investigated the same treatment and none was completely free of bias. All studies had adequate blinding, sequence generation and reporting of primary outcomes. Based on moderate-certainty evidence, intrathecal nusinersen improved motor function (disability) in children with SMA type II, with a 3.7-point improvement in the nusinersen group on the Hammersmith Functional Motor Scale Expanded (HFMSE; range of possible scores 0 to 66), compared to a 1.9-point decline on the HFMSE in the sham procedure group (P < 0.01; n = 126). On all motor function scales used, higher scores indicate better function. Based on moderate-certainty evidence from two studies, the following interventions had no clinically important effect on motor function scores in SMA types II or III (or both) in comparison to placebo: creatine (median change 1 higher, 95% confidence interval (CI) -1 to 2; on the Gross Motor Function Measure (GMFM), scale 0 to 264; n = 40); and combination therapy with valproic acid and carnitine (mean difference (MD) 0.64, 95% CI -1.1 to 2.38; on the Modified Hammersmith Functional Motor Scale (MHFMS), scale 0 to 40; n = 61). Based on low-certainty evidence from other single studies, the following interventions had no clinically important effect on motor function scores in SMA types II or III (or both) in comparison to placebo: gabapentin (median change 0 in the gabapentin group and -2 in the placebo group on the SMA Functional Rating Scale (SMAFRS), scale 0 to 50; n = 66); hydroxyurea (MD -1.88, 95% CI -3.89 to 0.13 on the GMFM, scale 0 to 264; n = 57), phenylbutyrate (MD -0.13, 95% CI -0.84 to 0.58 on the Hammersmith Functional Motor Scale (HFMS) scale 0 to 40; n = 90) and monotherapy of valproic acid (MD 0.06, 95% CI -1.32 to 1.44 on SMAFRS, scale 0 to 50; n = 31). Very low-certainty evidence suggested that the following interventions had little or no effect on motor function: olesoxime (MD 2, 95% -0.25 to 4.25 on the Motor Function Measure (MFM) D1 + D2, scale 0 to 75; n = 160) and somatotropin (median change at 3 months 0.25 higher, 95% CI -1 to 2.5 on the HFMSE, scale 0 to 66; n = 19). One small TRH trial did not report effects on motor function and the certainty of evidence for other outcomes from this trial were low or very low. Results of nine completed trials investigating 4-aminopyridine, acetyl-L-carnitine, CK-2127107, hydroxyurea, pyridostigmine, riluzole, RO6885247/RG7800, salbutamol and valproic acid were awaited and not available for analysis at the time of writing. Various trials and studies investigating treatment strategies other than nusinersen (e.g. SMN2-augmentation by small molecules), are currently ongoing.
AUTHORS' CONCLUSIONS: Nusinersen improves motor function in SMA type II, based on moderate-certainty evidence. Creatine, gabapentin, hydroxyurea, phenylbutyrate, valproic acid and the combination of valproic acid and ALC probably have no clinically important effect on motor function in SMA types II or III (or both) based on low-certainty evidence, and olesoxime and somatropin may also have little to no clinically important effect but evidence was of very low-certainty. One trial of TRH did not measure motor function.
脊髓性肌萎缩症(SMA)是由5号染色体上生存运动神经元1(SMN1)基因的纯合缺失,或第二个SMN1等位基因的杂合缺失并伴有(点)突变引起的。这会导致前角细胞退化,进而导致进行性肌肉无力。II型SMA患儿在无支撑情况下无法发展行走能力,预期寿命缩短,而III型SMA患儿能够发展行走能力,预期寿命正常。这是一篇综述的更新,该综述首次发表于2009年,之前于2011年进行过更新。
评估药物治疗是否能够减缓或阻止II型和III型SMA的疾病进展,并评估这种治疗是否可以安全给药。
我们于2018年10月检索了Cochrane神经肌肉专业注册库、Cochrane系统评价数据库、医学期刊数据库(MEDLINE)、荷兰医学文摘数据库(Embase)以及科学引文索引(ISI)网络版会议论文集。2018年10月,我们还检索了两个试验注册库以识别未发表的试验。
我们寻找了所有检验II型和III型SMA药物治疗疗效的随机或半随机试验。参与者必须符合临床标准,并且经基因分析确认在SMN1基因(5q11.2 - 13.2)的第二个等位基因中存在纯合缺失或半合子缺失并伴有一个点突变。主要结局指标是治疗开始后一年内残疾评分的变化。治疗开始后一年内的次要结局指标包括肌肉力量的变化、站立或行走能力、生活质量的变化、从治疗开始到死亡或全日制通气的时间以及试验期间归因于治疗的不良事件。涉及用病毒载体替代SMN1的治疗策略不在本综述范围内,但在附录1中给出了总结。I型SMA的药物治疗是另一篇Cochrane综述的主题。
我们遵循标准的Cochrane方法。
综述作者发现了10项针对II型和III型SMA治疗的随机、安慰剂对照试验,共717名参与者。本次更新时我们纳入了其中4项试验。这些试验研究了肌酸(55名参与者)、加巴喷丁(84名参与者)、羟基脲(57名参与者)、诺西那生(126名参与者)、奥洛西姆(165名参与者)、苯丁酸钠(107名参与者)、生长激素(20名参与者)、促甲状腺激素释放激素(TRH)(9名参与者)、丙戊酸(33名参与者)以及丙戊酸与乙酰 - L - 肉碱(ALC)的联合治疗(61名参与者)。治疗持续时间为3至24个月。没有一项研究调查相同的治疗方法,且没有一项研究完全没有偏倚。所有研究在主要结局的随机序列生成、分配隐藏和报告方面均恰当。基于中等确定性证据,鞘内注射诺西那生改善了II型SMA患儿的运动功能(残疾情况),诺西那生组在扩展的哈默史密斯功能运动量表(HFMSE;可能得分范围为0至66)上提高了3.7分,而假手术组的HFMSE下降了1.9分(P < 0.01;n = 126)。在所有使用的运动功能量表上,得分越高表明功能越好。基于两项研究的中等确定性证据,与安慰剂相比,以下干预措施对II型或III型SMA(或两者)的运动功能评分没有临床重要影响:肌酸(中位数变化高1分,95%置信区间(CI) - 1至2;在粗大运动功能测量量表(GMFM)上,量表范围为0至264;n = 40);以及丙戊酸与肉碱的联合治疗(平均差(MD)0.64,95% CI - 1.1至2.38;在改良的哈默史密斯功能运动量表(MHFMS)上,量表范围为0至40;n = 61)。基于其他单项研究的低确定性证据,与安慰剂相比,以下干预措施对II型或III型SMA(或两者)的运动功能评分没有临床重要影响:加巴喷丁(加巴喷丁组中位数变化为0,安慰剂组在脊髓性肌萎缩症功能评定量表(SMAFRS)上为 - 2,量表范围为0至50;n = 66);羟基脲(在GMFM上MD为 - 1.88,95% CI - 3.89至0.13,量表范围为0至264;n = 57),苯丁酸钠(在哈默史密斯功能运动量表(HFMS)上MD为 - 0.13,95% CI - 0.84至0.58,量表范围为0至40;n = 90)和丙戊酸单药治疗(在SMAFRS上MD为0.06,95% CI - 1.32至1.44,量表范围为0至50;n = 31)。极低确定性证据表明,以下干预措施对运动功能影响很小或没有影响:奥洛西姆(在运动功能测量量表(MFM)D1 + D2上MD为2,95% CI - 0.25至4.25,量表范围为0至75;n = 160)和生长激素(3个月时中位数变化高0.25分,95% CI - 1至2.5在HFMSE上,量表范围为0至66;n = 19)。一项小型TRH试验未报告对运动功能的影响,该试验其他结局的证据确定性为低或极低。9项关于4 - 氨基吡啶、乙酰 - L - 肉碱、CK - 2127107、羟基脲、吡啶斯的明、利鲁唑、RO6885247/RG7800、沙丁胺醇和丙戊酸的已完成试验结果正在等待,在撰写本文时无法进行分析。目前正在进行各种研究诺西那生以外治疗策略(例如通过小分子增强SMN2)的试验和研究。
基于中等确定性证据,诺西那生可改善II型SMA的运动功能。基于低确定性证据,肌酸、加巴喷丁、羟基脲、苯丁酸钠、丙戊酸以及丙戊酸与ALC的联合治疗可能对II型或III型SMA(或两者)的运动功能没有临床重要影响,奥洛西姆和生长激素可能也几乎没有临床重要影响,但证据确定性极低。一项TRH试验未测量运动功能。