Zwartkruis Maria M, Kortooms Joris V, Gommers Demi, Elferink Martin G, Signoria Ilaria, van der Sel Joyce, Hop Paul J, Zwamborn Ramona A J, Geene Robin, Green Jared W, van Deutekom Hanneke W M, van Rheenen Wouter, Veldink Jan H, Asselman Fay-Lynn, Wadman Renske I, van der Pol W Ludo, van Haaften Gijs W, Groen Ewout J N
Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands.
Department of Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands.
iScience. 2025 Apr 17;28(5):112461. doi: 10.1016/j.isci.2025.112461. eCollection 2025 May 16.
Spinal muscular atrophy (SMA) is a severe neurodegenerative disease caused by defects in the () gene. Although disease severity partially correlates with copy number, significant variability in disease severity and treatment response remains unexplained, prompting a search for additional biomarkers. Using native, long-read nanopore and targeted short-read bisulfite sequencing, we analyzed methylation patterns across the 30 kb gene. Our long-read analysis of 29 SMA patients identified tissue-specific variation in intronic regions and the 3'UTR. Further analysis of blood-derived DNA of 365 SMA patients identified no association between methylation and disease severity or treatment response, excluding blood-derived DNA methylation as a predictive biomarker. However, we discovered significant age-associated variation in methylation in intron 1 and the 3'UTR, suggesting a possible role in modifying SMN expression during development and aging. This study provides a framework for detailed methylation analysis in complex genetic regions.
脊髓性肌萎缩症(SMA)是一种由()基因缺陷引起的严重神经退行性疾病。尽管疾病严重程度与()拷贝数部分相关,但疾病严重程度和治疗反应的显著变异性仍无法解释,这促使人们寻找其他生物标志物。我们使用原生长读长纳米孔测序和靶向短读长亚硫酸氢盐测序,分析了跨越30 kb()基因的甲基化模式。我们对29名SMA患者的长读长分析确定了内含子区域和3'非翻译区的组织特异性变异。对365名SMA患者血液来源DNA的进一步分析未发现()甲基化与疾病严重程度或治疗反应之间存在关联,排除了血液来源DNA甲基化作为预测生物标志物的可能性。然而,我们发现内含子1和3'非翻译区的()甲基化存在显著的年龄相关变异,表明其在发育和衰老过程中修饰SMN表达可能发挥作用。本研究为复杂基因区域的详细甲基化分析提供了一个框架。
Mol Genet Genomic Med. 2015-3-21
Nat Genet. 2025-1
Mol Ther Methods Clin Dev. 2024-11-13
Signal Transduct Target Ther. 2024-11-26
Nat Biotechnol. 2024-8
Nat Struct Mol Biol. 2024-3
Nat Aging. 2023-9
Nat Rev Genet. 2023-5
Nature. 2023-1