Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Antioxid Redox Signal. 2020 Aug 20;33(6):435-454. doi: 10.1089/ars.2020.8046. Epub 2020 Apr 17.
The primary function of NADPH oxidases (NOX1-5 and dual oxidases DUOX1/2) is to produce reactive oxygen species (ROS). If inadequately regulated, NOX-associated ROS can promote oxidative stress, aberrant signaling, and genomic instability. Correspondingly, NOX isoforms are known to be overexpressed in multiple malignancies, thus constituting potential therapeutic targets in cancer. Multiple genetic studies aimed at suppressing the expression of NOX proteins in cellular and animal models of cancer have provided support for the notion that NOXs play a pro-tumorigenic role. Further, large drug screens and rational design efforts have yielded inhibitor compounds, such as the diphenylene iodonium (DPI) analog series developed by our group, with increased selectivity and potency over "first generation" NOX inhibitors such as apocynin and DPI. The precise role of NOX enzymes in tumor biology remains poorly defined. The tumorigenic properties of NOXs vary with cancer type, and precise tools, such as selective inhibitors, are needed to deconvolute NOX contribution to cancer development. Most NOX inhibitors developed to date are unspecific, and/or their mechanistic and pharmacological characteristics are not well defined. A lack of high-resolution crystal structures for NOX functional domains has hindered the development of potent and selective inhibitors. In-depth studies of NOX interactions with the tumor microenvironment (., cytokines, cell-surface antigens) will help identify new approaches for NOX inhibition in cancer.
NADPH 氧化酶(NOX1-5 和双氧化酶 DUOX1/2)的主要功能是产生活性氧物种(ROS)。如果调节不当,NOX 相关的 ROS 可促进氧化应激、异常信号转导和基因组不稳定性。相应地,NOX 同工型在多种恶性肿瘤中过度表达,因此成为癌症潜在的治疗靶点。多项旨在抑制癌症细胞和动物模型中 NOX 蛋白表达的遗传研究为 NOX 发挥促肿瘤作用的观点提供了支持。此外,大规模药物筛选和合理设计工作已经产生了抑制剂化合物,例如我们小组开发的二苯并碘鎓(DPI)类似物系列,与阿朴肉桂酸和 DPI 等“第一代”NOX 抑制剂相比,选择性和效力都有所提高。NOX 酶在肿瘤生物学中的确切作用仍未得到明确界定。NOX 的致癌特性因癌症类型而异,需要精确的工具,如选择性抑制剂,来分解 NOX 对癌症发展的贡献。迄今为止开发的大多数 NOX 抑制剂都是非特异性的,并且/或者其作用机制和药理学特性尚未得到很好的定义。缺乏 NOX 功能结构域的高分辨率晶体结构阻碍了有效和选择性抑制剂的开发。深入研究 NOX 与肿瘤微环境(例如细胞因子、细胞表面抗原)的相互作用将有助于确定癌症中 NOX 抑制的新方法。