Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA.
Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA.
Fungal Biol. 2020 Feb;124(2):91-101. doi: 10.1016/j.funbio.2019.12.001. Epub 2019 Dec 10.
Arbuscular Mycorrhizal fungi (AMF, Glomeromycota) form obligate symbiotic associations with the roots of most terrestrial plants. Our understanding of the molecular mechanisms enabling AMF propagation and AMF-host interaction is currently incomplete. Analysis of AMF proteomes could yield important insights and generate hypotheses on the nature and mechanism of AMF-plant symbiosis. Here, we examined the extraradical mycelium proteomic profile of the arbuscular mycorrhizal fungus Rhizophagus irregularis grown on Ri T-DNA transformed Chicory roots in a root organ culture setting. Our analysis detected 529 different peptides that mapped to 474 translated proteins in the R. irregularis genome. R. irregularis proteome was characterized by a high proportion of proteins (9.9 % of total, 21.4 % of proteins with functional prediction) mediating a wide range of signal transduction processes, e.g. Rho1 and Bmh2, Ca-signaling (calmodulin, and Ca channel protein), mTOR signaling (MAP3K7, and MAPKAP1), and phosphatidate signaling (phospholipase D1/2) proteins, as well as members of the Ras signaling pathway. In addition, the proteome contained an unusually large proportion (53.6 %) of hypothetical proteins, the majority of which (85.8 %) were Glomeromycota-specific. Forty-eight proteins were predicted to be surface/membrane associated, including multiple hypothetical proteins of yet-unrecognized functions. However, no evidence for the overproduction of specific proteins, previously implicated in promoting soil health and aggregation was obtained. Finally, the comparison of R. irregularis proteome to previously published AMF proteomes identified a core set of pathways and processes involved in AMF growth. We conclude that R. irregularis growth on chicory roots requires the activation of a wide range of signal transduction pathways, the secretion of multiple novel hitherto unrecognized Glomeromycota-specific proteins, and the expression of a wide array of surface-membrane associated proteins for cross kingdom cell-to-cell communications.
丛枝菌根真菌 (AMF,球囊霉门) 与大多数陆生植物的根系形成专性共生关系。我们目前对 AMF 繁殖和 AMF-宿主相互作用的分子机制的理解还不完全。分析 AMF 蛋白质组可以提供重要的见解,并对 AMF-植物共生的性质和机制产生假设。在这里,我们在根器官培养环境中研究了丛枝菌根真菌粗糙脉孢菌在 Ri T-DNA 转化的菊苣根上生长的外生菌根菌丝体蛋白质组图谱。我们的分析检测到 529 种不同的肽,这些肽映射到粗糙脉孢菌基因组中的 474 个翻译蛋白上。粗糙脉孢菌蛋白质组的特点是具有高比例的蛋白质(占总蛋白质的 9.9%,具有功能预测的蛋白质的 21.4%),这些蛋白质介导了广泛的信号转导过程,例如 Rho1 和 Bmh2、钙信号(钙调蛋白和钙通道蛋白)、mTOR 信号(MAP3K7 和 MAPKAP1)和磷酸脂信号(磷脂酶 D1/2)蛋白,以及 Ras 信号通路的成员。此外,蛋白质组还包含异常大量的(53.6%)假设蛋白,其中大多数(85.8%)是球囊霉门特异性的。预测有 48 种蛋白质是表面/膜相关的,其中包括多种尚未被识别功能的假设蛋白。然而,没有证据表明以前被认为能促进土壤健康和团聚的特定蛋白质的过度产生。最后,将粗糙脉孢菌蛋白质组与以前发表的 AMF 蛋白质组进行比较,确定了一组参与 AMF 生长的核心途径和过程。我们得出的结论是,粗糙脉孢菌在菊苣根上的生长需要激活广泛的信号转导途径、分泌多种新的迄今尚未被识别的球囊霉门特异性蛋白,并表达广泛的表面/膜相关蛋白,以进行跨王国的细胞间通讯。