Sędzielewska Toro Kinga, Brachmann Andreas
Genetics, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Straße 2-4, 82152, Planegg-Martinsried, Germany.
BMC Genomics. 2016 Feb 9;17:101. doi: 10.1186/s12864-016-2422-y.
Arbuscular mycorrhizal fungi (AMF) form an ecologically important symbiosis with more than two thirds of studied land plants. Recent studies of plant-pathogen interactions showed that effector proteins play a key role in host colonization by controlling the plant immune system. We hypothesise that also for symbiotic-plant interactions the secreted effectome of the fungus is a major component of communication and the conservation level of effector proteins between AMF species may be indicative whether they play a fundamental role.
In this study, we used a bioinformatics pipeline to predict and compare the effector candidate repertoire of the two AMF species, Rhizophagus irregularis and Rhizophagus clarus. Our in silico pipeline revealed a list of 220 R. irregularis candidate effector genes that create a valuable information source to elucidate the mechanism of plant infection and colonization by fungi during AMF symbiotic interaction. While most of the candidate effectors show no homologies to known domains or proteins, the candidates with homologies point to potential roles in signal transduction, cell wall modification or transcription regulation. A remarkable aspect of our work is presence of a large portion of the effector proteins involved in symbiosis, which are not unique to each fungi or plant species, but shared along the Glomeromycota phylum. For 95% of R. irregularis candidates we found homologs in a R. clarus genome draft generated by Illumina high-throughput sequencing. Interestingly, 9% of the predicted effectors are at least as conserved between the two Rhizophagus species as proteins with housekeeping functions (similarity > 90%). Therefore, we state that this group of highly conserved effector proteins between AMF species may play a fundamental role during fungus-plant interaction.
We hypothesise that in symbiotic interactions the secreted effectome of the fungus might be an important component of communication. Identification and functional characterization of the primary AMF effectors that regulate symbiotic development will help in understanding the mechanisms of fungus-plant interaction.
丛枝菌根真菌(AMF)与超过三分之二的已研究陆地植物形成了具有重要生态意义的共生关系。最近对植物 - 病原体相互作用的研究表明,效应蛋白通过控制植物免疫系统在宿主定殖中起关键作用。我们推测,对于共生植物相互作用而言,真菌分泌的效应子组也是通讯的主要组成部分,并且AMF物种之间效应蛋白的保守水平可能表明它们是否发挥着重要作用。
在本研究中,我们使用生物信息学流程来预测和比较两种AMF物种,即不规则球囊霉(Rhizophagus irregularis)和明球囊霉(Rhizophagus clarus)的效应子候选库。我们的计算机模拟流程揭示了220个不规则球囊霉候选效应子基因列表,这为阐明AMF共生相互作用期间真菌对植物的感染和定殖机制提供了宝贵的信息来源。虽然大多数候选效应子与已知结构域或蛋白质没有同源性,但具有同源性的候选效应子表明它们在信号转导、细胞壁修饰或转录调控中可能发挥作用。我们工作的一个显著方面是参与共生的效应蛋白中有很大一部分并非每种真菌或植物物种所特有,而是在球囊菌门中共享。对于95%的不规则球囊霉候选效应子,我们在通过Illumina高通量测序生成的明球囊霉基因组草图中找到了同源物。有趣的是,预测的效应子中有9%在两种球囊霉物种之间至少与具有管家功能的蛋白质一样保守(相似度>90%)。因此,我们认为AMF物种之间的这组高度保守的效应蛋白可能在真菌 - 植物相互作用中发挥重要作用。
我们推测在共生相互作用中,真菌分泌的效应子组可能是通讯的重要组成部分。鉴定和功能表征调节共生发育的主要AMF效应子将有助于理解真菌 - 植物相互作用的机制。