IEEE Trans Biomed Eng. 2020 Oct;67(10):2745-2753. doi: 10.1109/TBME.2020.2969892. Epub 2020 Jan 28.
To enable non-invasive dynamic metabolic mapping in rodent model studies of mitochondrial function using P-MR spectroscopic imaging (MRSI).
We developed a novel method for high-resolution dynamic P-MRSI. The method synergistically integrates physics-based models of spectral structures, biochemical modeling of molecular dynamics, and subspace learning to capture spatiospectral variations. Fast data acquisition was achieved using rapid spiral trajectories and sparse sampling of (k, t, T)-space; image reconstruction was accomplished using a low-rank tensor-based framework.
The proposed method provided high-resolution dynamic metabolic mapping in rat hindlimb at spatial and temporal resolutions of 4[Formula: see text]2 mm and 1.28 s, respectively. This allowed for in vivo mapping of the time-constant of phosphocreatine resynthesis, a well established index of mitochondrial oxidative capacity. Multiple rounds of in vivo experiments were performed to demonstrate reproducibility, and in vitro experiments were used to validate the accuracy of the estimated metabolite maps.
A new model-based method is proposed to achieve high-resolution dynamic P-MRSI. The proposed method's ability to delineate metabolic heterogeneity was demonstrated in rat hindlimb.
Abnormal mitochondrial metabolism is a key cellular dysfunction in many prevalent diseases such as diabetes and heart disease; however, current understanding of mitochondrial function is mostly gained from studies on isolated mitochondria under nonphysiological conditions. The proposed method has the potential to open new avenues of research by allowing in vivo and longitudinal studies of mitochondrial dysfunction in disease development and progression.
利用 P-MR 波谱成像(MRSI)在研究线粒体功能的啮齿动物模型中实现非侵入性动态代谢映射。
我们开发了一种用于高分辨率动态 P-MRSI 的新方法。该方法协同整合了光谱结构的物理模型、分子动力学的生化建模和子空间学习,以捕捉时空变化。快速螺旋轨迹和(k,t,T)空间的稀疏采样实现了快速数据采集;使用基于低秩张量的框架完成图像重建。
所提出的方法在大鼠后肢提供了高分辨率的动态代谢映射,空间和时间分辨率分别为 4[Formula: see text]2 毫米和 1.28 秒。这使得能够在体内映射磷酸肌酸再合成的时间常数,这是线粒体氧化能力的一个公认指标。进行了多次体内实验以证明可重复性,并进行了体外实验以验证估计代谢物图谱的准确性。
提出了一种新的基于模型的方法来实现高分辨率动态 P-MRSI。所提出的方法在大鼠后肢中展示了描绘代谢异质性的能力。
异常的线粒体代谢是许多常见疾病(如糖尿病和心脏病)中关键的细胞功能障碍;然而,目前对线粒体功能的理解主要来自于非生理条件下对分离线粒体的研究。该方法有可能通过允许在疾病发展和进展中进行体内和纵向研究线粒体功能障碍,为研究开辟新途径。