Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Shenzhen, Guangdong, China.
Magn Reson Med. 2018 Jan;79(1):13-21. doi: 10.1002/mrm.26972. Epub 2017 Oct 24.
To map brain metabolites and tissue magnetic susceptibility simultaneously using a single three-dimensional H-MRSI acquisition without water suppression.
The proposed technique builds on a subspace imaging method called spectroscopic imaging by exploiting spatiospectral correlation (SPICE), which enables ultrashort echo time (TE)/short pulse repetition time (TR) acquisitions for H-MRSI without water suppression. This data acquisition scheme simultaneously captures both the spectral information of brain metabolites and the phase information of the water signals that is directly related to tissue magnetic susceptibility variations. In extending this scheme for simultaneous QSM and metabolic imaging, we increase k-space coverage by using dual density sparse sampling and ramp sampling to achieve spatial resolution often required by QSM, while maintaining a reasonable signal-to-noise ratio (SNR) for the spatiospectral data used for metabolite mapping. In data processing, we obtain high-quality QSM from the unsuppressed water signals by taking advantage of the larger number of echoes acquired and any available anatomical priors; metabolite spatiospectral distributions are reconstructed using a union-of-subspaces model.
In vivo experimental results demonstrate that the proposed method can produce susceptibility maps at a resolution higher than 1.8 × 1.8 × 2.4 mm along with metabolite spatiospectral distributions at a nominal spatial resolution of 2.4 × 2.4 × 2.4 mm from a single 7-min MRSI scan. The estimated susceptibility values are consistent with those obtained using the conventional QSM method with 3D multi-echo gradient echo acquisitions.
This article reports a new capability for simultaneous susceptibility mapping and metabolic imaging of the brain from a single H-MRSI scan, which has potential for a wide range of applications. Magn Reson Med 79:13-21, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
利用无需水抑制的单个三维 H-MRSI 采集同时绘制脑代谢物和组织磁化率图谱。
所提出的技术基于一种称为波谱成像的子空间成像方法,利用光谱空间相关性(SPICE),实现无需水抑制的超短回波时间(TE)/短脉冲重复时间(TR)采集用于 H-MRSI。这种数据采集方案同时捕捉脑代谢物的光谱信息和与组织磁化率变化直接相关的水信号的相位信息。在将此方案扩展到同时进行 QSM 和代谢成像时,我们通过使用双密度稀疏采样和斜坡采样来增加 k 空间覆盖范围,以实现 QSM 通常所需的空间分辨率,同时保持用于代谢物映射的光谱数据的合理信噪比(SNR)。在数据处理中,我们利用获得的更多回波和任何可用的解剖学先验信息,从未抑制的水信号中获得高质量的 QSM;使用子空间联合模型重建代谢物的光谱分布。
体内实验结果表明,该方法可以在分辨率高于 1.8×1.8×2.4mm 的情况下生成磁化率图,同时在单 7 分钟 MRSI 扫描中以名义空间分辨率 2.4×2.4×2.4mm 生成代谢物的光谱分布。估计的磁化率值与使用具有 3D 多回波梯度回波采集的传统 QSM 方法获得的值一致。
本文报道了一种从单个 H-MRSI 扫描同时进行大脑磁化率和代谢成像的新能力,具有广泛的应用潜力。磁共振医学 79:13-21, 2018。© 2017 国际磁共振学会。