Suppr超能文献

P 磁共振指纹成像技术快速定量活体肌酸激酶反应速率。

P magnetic resonance fingerprinting for rapid quantification of creatine kinase reaction rate in vivo.

机构信息

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.

Department of Radiology, Case Western Reserve University, Cleveland, OH, USA.

出版信息

NMR Biomed. 2017 Dec;30(12). doi: 10.1002/nbm.3786. Epub 2017 Sep 15.

Abstract

The purpose of this work was to develop a P spectroscopic magnetic resonance fingerprinting (MRF) method for fast quantification of the chemical exchange rate between phosphocreatine (PCr) and adenosine triphosphate (ATP) via creatine kinase (CK). A P MRF sequence (CK-MRF) was developed to quantify the forward rate constant of ATP synthesis via CK ( kfCK), the T relaxation time of PCr ( T1PCr), and the PCr-to-ATP concentration ratio ( MRPCr). The CK-MRF sequence used a balanced steady-state free precession (bSSFP)-type excitation with ramped flip angles and a unique saturation scheme sensitive to the exchange between PCr and γATP. Parameter estimation was accomplished by matching the acquired signals to a dictionary generated using the Bloch-McConnell equation. Simulation studies were performed to examine the susceptibility of the CK-MRF method to several potential error sources. The accuracy of nonlocalized CK-MRF measurements before and after an ischemia-reperfusion (IR) protocol was compared with the magnetization transfer (MT-MRS) method in rat hindlimb at 9.4 T (n = 14). The reproducibility of CK-MRF was also assessed by comparing CK-MRF measurements with both MT-MRS (n = 17) and four angle saturation transfer (FAST) (n = 7). Simulation results showed that CK-MRF quantification of kfCK was robust, with less than 5% error in the presence of model inaccuracies including dictionary resolution, metabolite T values, inorganic phosphate metabolism, and B miscalibration. Estimation of kfCK by CK-MRF (0.38 ± 0.02 s at baseline and 0.42 ± 0.03 s post-IR) showed strong agreement with MT-MRS (0.39 ± 0.03 s at baseline and 0.44 ± 0.04 s post-IR). kfCK estimation was also similar between CK-MRF and FAST (0.38 ± 0.02 s for CK-MRF and 0.38 ± 0.11 s for FAST). The coefficient of variation from 20 s CK-MRF quantification of kfCK was 42% of that by 150 s MT-MRS acquisition and was 12% of that by 20 s FAST acquisition. This study demonstrates the potential of a P spectroscopic MRF framework for rapid, accurate and reproducible quantification of chemical exchange rate of CK in vivo.

摘要

这项工作的目的是开发一种 P 波磁共振指纹图谱(MRF)方法,通过肌酸激酶(CK)快速定量磷酸肌酸(PCr)和三磷酸腺苷(ATP)之间的化学交换率。开发了一种 P 波 MRF 序列(CK-MRF)来定量通过 CK 的 ATP 合成正向速率常数(kfCK)、PCr 的 T1 弛豫时间(T1PCr)和 PCr 与 ATP 浓度比(MRPCr)。CK-MRF 序列使用带有斜坡翻转角的平衡稳态自由进动(bSSFP)型激发和一种独特的饱和方案,该方案对 PCr 和 γATP 之间的交换敏感。通过将采集到的信号与使用 Bloch-McConnell 方程生成的字典进行匹配来完成参数估计。进行了模拟研究,以检查 CK-MRF 方法对几种潜在误差源的敏感性。在 9.4T 大鼠后肢中,比较了缺血再灌注(IR)前后非局部化 CK-MRF 测量与磁化转移(MT-MRS)方法的准确性(n=14)。还通过比较 CK-MRF 测量值与 MT-MRS(n=17)和四个角度饱和转移(FAST)(n=7)来评估 CK-MRF 的重现性。模拟结果表明,CK-MRF 对 kfCK 的定量具有鲁棒性,在存在包括字典分辨率、代谢物 T 值、无机磷代谢和 B 校准错误在内的模型不准确的情况下,误差小于 5%。通过 CK-MRF 估计的 kfCK(基线为 0.38±0.02s,IR 后为 0.42±0.03s)与 MT-MRS(基线为 0.39±0.03s,IR 后为 0.44±0.04s)吻合良好。CK-MRF 和 FAST 之间的 kfCK 估计也相似(CK-MRF 为 0.38±0.02s,FAST 为 0.38±0.11s)。20s CK-MRF 定量 kfCK 的变异系数是 150s MT-MRS 采集的 42%,是 20s FAST 采集的 12%。这项研究证明了 P 波光谱磁共振指纹图谱框架在体内快速、准确和可重复定量 CK 化学交换率的潜力。

相似文献

1
P magnetic resonance fingerprinting for rapid quantification of creatine kinase reaction rate in vivo.
NMR Biomed. 2017 Dec;30(12). doi: 10.1002/nbm.3786. Epub 2017 Sep 15.
3
Fast in vivo assay of creatine kinase activity in the human brain by P magnetic resonance fingerprinting.
NMR Biomed. 2023 Nov;36(11):e4998. doi: 10.1002/nbm.4998. Epub 2023 Jul 9.
9
Rapid and simultaneous measurement of phosphorus metabolite pool size ratio and reaction kinetics of enzymes in vivo.
J Magn Reson Imaging. 2018 Jan;47(1):210-221. doi: 10.1002/jmri.25744. Epub 2017 May 8.

引用本文的文献

2
A flexible MRF approach to improve kinetic rate estimation with bSSFP-based hyperpolarized [1-C]pyruvate MRI.
Magn Reson Med. 2025 Jun;93(6):2263-2277. doi: 10.1002/mrm.30466. Epub 2025 Mar 4.
4
Multi-parametric MRI for radiotherapy simulation.
Med Phys. 2023 Aug;50(8):5273-5293. doi: 10.1002/mp.16256. Epub 2023 Feb 9.
7
Magnetic Resonance Fingerprinting: Implications and Opportunities for PET/MR.
IEEE Trans Radiat Plasma Med Sci. 2019 Jul;3(4):388-399. doi: 10.1109/trpms.2019.2897425. Epub 2019 Feb 4.
8
High-Resolution Dynamic P-MR Spectroscopic Imaging for Mapping Mitochondrial Function.
IEEE Trans Biomed Eng. 2020 Oct;67(10):2745-2753. doi: 10.1109/TBME.2020.2969892. Epub 2020 Jan 28.
9
Improved MR fingerprinting for relaxation measurement in the presence of semisolid magnetization transfer.
Magn Reson Med. 2020 Aug;84(2):727-737. doi: 10.1002/mrm.28159. Epub 2020 Jan 3.

本文引用的文献

2
MR fingerprinting for rapid quantification of myocardial T , T , and proton spin density.
Magn Reson Med. 2017 Apr;77(4):1446-1458. doi: 10.1002/mrm.26216. Epub 2016 Apr 1.
3
MR Fingerprinting for Rapid Quantitative Abdominal Imaging.
Radiology. 2016 Apr;279(1):278-86. doi: 10.1148/radiol.2016152037. Epub 2016 Jan 21.
5
MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout.
Magn Reson Med. 2015 Dec;74(6):1621-31. doi: 10.1002/mrm.25559. Epub 2014 Dec 9.
9
Magnetic resonance fingerprinting.
Nature. 2013 Mar 14;495(7440):187-92. doi: 10.1038/nature11971.
10
Three-dimensional mapping of the creatine kinase enzyme reaction rate in muscles of the lower leg.
NMR Biomed. 2013 Sep;26(9):1142-51. doi: 10.1002/nbm.2928. Epub 2013 Feb 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验