Yao Yazhou, Shen Fumin, Xie Guosen, Liu Li, Zhu Fan, Zhang Jian, Shen Heng Tao
IEEE Trans Neural Netw Learn Syst. 2020 Jul;31(7):2348-2360. doi: 10.1109/TNNLS.2020.2966644. Epub 2020 Feb 3.
Studies present that dividing categories into subcategories contributes to better image classification. Existing image subcategorization works relying on expert knowledge and labeled images are both time-consuming and labor-intensive. In this article, we propose to select and subsequently classify images into categories and subcategories. Specifically, we first obtain a list of candidate subcategory labels from untagged corpora. Then, we purify these subcategory labels through calculating the relevance to the target category. To suppress the search error and noisy subcategory label-induced outlier images, we formulate outlier images removing and the optimal classification models learning as a unified problem to jointly learn multiple classifiers, where the classifier for a category is obtained by combining multiple subcategory classifiers. Compared with the existing subcategorization works, our approach eliminates the dependence on expert knowledge and labeled images. Extensive experiments on image categorization and subcategorization demonstrate the superiority of our proposed approach.
研究表明,将类别划分为子类别有助于更好地进行图像分类。现有的依赖专家知识和带标签图像的图像子分类工作既耗时又费力。在本文中,我们建议先选择图像,然后将其分类为类别和子类别。具体来说,我们首先从未标记的语料库中获取候选子类别标签列表。然后,我们通过计算与目标类别的相关性来纯化这些子类别标签。为了抑制搜索误差和由噪声子类别标签引起的离群图像,我们将离群图像去除和最优分类模型学习表述为一个统一的问题,以联合学习多个分类器,其中一个类别的分类器是通过组合多个子类别分类器获得的。与现有的子分类工作相比,我们的方法消除了对专家知识和带标签图像的依赖。在图像分类和子分类上的大量实验证明了我们提出的方法的优越性。